[1] Broda R. A review of the triple-to-double coincidence ratio (TDCR) method for standardizing radionuclides [J]. Applied Radiation and Isotopes, 2003, 58(5): 585-594. [2] HOU X L. Liquid scintillation counting for determination of radionuclides in environmental and nuclear application [J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318(3): 1597-1628. [3] Cassette P, Broda R, Hainos D, et al. Analysis of detection-efficiency variation techniques for the implementation of the TDCR method in liquid scintillation counting [J]. Applied Radiation and Isotopes, 2000, 52(3): 643-648. [4] Pochwalski K, Broda R, Radoszewski T. Standardization of pure beta emitters by liquid-scintillation counting [J]. International Journal of Radiation Applications and Instrumentation Part A Applied Radiation and Isotopes, 1988, 39(2): 165-172. [5] Zimmerman B E, Collé R, Cessna J T. Construction and implementation of the NIST triple-to-double coincidence ratio (TDCR) spectrometer [J]. Applied Radiation and Isotopes, 2004, 60(2): 433-438. [6] Razdolescu A C, Broda R, Cassette P, et al. The IFIN-HH triple coincidence liquid scintillation counter [J]. Applied Radiation and Isotopes, 2006, 64(10): 1510-1514. [7] NäHle O, Kossert K, Cassette P. Activity standardization of 3H with the new TDCR system at PTB [J]. Applied Radiation and Isotopes, 2010, 68(7): 1534-1536. [8] Krapiec M, Walanus A. Application of the triple-photomultiplier liquid spectrometer Hidex 300SL in radiocarbon dating [J]. Radiocarbon, 2011, 53(3): 543-550. [9] Priya S, Murali M S, Mary G, et al. Validation of chemical separation method for the determination of 63Ni using TDCR technique in steel samples of APSARA reactor [J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(3): 1551-1557. [10] DAI X, Kramer-tremblay S. Five-column chromatography separation for simultaneous determination of hard-to-detect radionuclides in water and swipe samples [J]. Analytical Chemistry, 2014, 86(11): 5441-5447. [11] Eikenberg J, Beer H, Jäggi M. Determination of 210Pb and 226Ra/228Ra in continental water using HIDEX 300SL LS-spectrometer with TDCR efficiency tracing and optimized α/β-discrimination [J]. Applied Radiation and Isotopes, 2014, 93(11): 64-69. [12] Guérin n, DAI X X. Determination of 55Fe in urine by liquid scintillation counting [J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304(3): 1059-1069. [13] Guérin N, Riopel R, Rao R, et al. An improved method for the rapid determination of 90Sr in cow’s milk [J]. Journal of Environmental Radioactivity, 2017, 175-176(9): 115-119. [14] Wanke C, Kossert K, NäHle O J. Investigations on TDCR measurements with the Hidex 300SL using a free parameter model [J]. Applied Radiation and Isotopes, 2012, 70(9): 2176-2183. [15] Kossert K, Capogni M, NäHle O J. Bilateral comparison between PTB and ENEA to check the performance of a commercial TDCR system for activity measurements [J]. Applied Radiation and Isotopes, 2014, 93(11): 38-44. [16] Jäggi M, Eikenberg J. Comparison of the TriCarb and Hidex 300SL technique using measurements of 241Pu and 90Sr on various samples [J]. Applied Radiation and Isotopes, 2014, 93(11): 120-125. [17] Currie L A. Limits for qualitative detection and quantitative determination: Application to radiochemistry [J]. Analytical Chemistry, 1968, 40(3): 586-593. |