[1] Asai A, Kawamoto K. Radiation-induced brain injury[J]. Brain Nerve, 2008, 60(2):123-9. [2] Gazanfar R, Nicholas F M, Robert J W. Cerebral radiation necrosis: A review of the pathobiology, diagnosis and management considerations[J]. J Clin Neurosci, 2013, 20(4): 485-502. [3] Balentova S, Adamkov M, Molecular. Cellular and functional effects of radiation-induced brain injury: a review[J]. Int J Mol Sci, 2015, 16(11):27 796-27 815. [4] Samuel T, Chao M D, Manmeet, et al. Challenges with the diagnosis and treatment of cerebral radiation necrosis[J]. Int J Radiat Oncol Biol Phys, 2013, 87(3):449-457. [5] 梁燕, 陈福慈, 张继青. 放射性脑损伤的研究进展[J]. 华南国防医学杂志, 2013, 27(02):142-145. LIANG Y, CHEN F C, ZHANG J Q. Advances in research of radiation brain injury[J]. Mil Med J S Chin, 2013, 27(02): 142-145. [6] 中国放射性脑损伤多学科协作组,中国医师协会神经内科分会脑与脊髓损害专业委员会. 放射性脑损伤诊治中国专家共识[J]. 中华神经医学杂志, 2019, 18(6):541-549. [7] 郭容,涂晓坤,李夏春,等.放射性脑损伤的发病机制及药物防治的研究进展[J].巴楚医学, 2019, 2(02):113-117. GUO R, TU X K, LI X, et al. Advances of pathogenesis and medical treatment in radiation brain injury[J]. Bachu Medical Journal, 2019, 2(02):113-117. [8] Baker D G, Krochak R J. The response of the microvascular system to radiation: a review[J]. Cancer Invest, 1989, 7(3):287-294. [9] YANG L, YANG J, LI G, et al. Pathophysiological responses in rat and mouse models of radiation-induced brain injury[J]. Mol Neurobiol, 2017, 54(2):1022-1032. [10] Balentova S, Adamkov M, Molecular. Cellular and functional effects of radiation-induced brain injury: A review[J]. Int J Mol Sci, 2015, 16(11):27796-27815. [11] Kurita H, Kawahara N, Asai A, et al. Radiation-induced apoptosis of oligodendrocytes in the adult rat brain[J]. Neurol Res, 2001, 23(8):869-874. [12] Abdulla S, Saada J, Johnson G, et al. Tumour progression or pseudoprogression? A review of post-treatment radiological appearances of glioblastoma[J]. Clin Radiol, 2015, 70(11):1299-312. [13] 贾庆明, 罗海清, 余忠华. 放射性脑损伤发病机制与治疗方法研究进展[J]. 中华实用诊断与治疗杂志, 2018, 32(12):1236-1239.. JIA Q M, LUO H Q, YU Z H. Pathogenesis and treatment of radiation-induced brain injury[J]. J Chi Pract Dx & Ther, 2018, 32(12): 1 236-1 239. [14] Faisal S A, Octavio A, Soheil Z, et al. Cerebral radiation necrosis: Incidence, pathogenesis, diagnostic challenges, and future opportunities[J]. Curr Oncol Rep, 2019, 21(8): 1 523-3 790. [15] Kos J, van Laar P J, Sinniqe P F, et al. Quantifying effects of radiotherapy-induced microvascular injury; review of established and emerging brain MRI techniques[J]. Radiother Oncol, 2019, 140: 41-53. [16] 马龙, 陈绍水. 放射性脑损伤发病机制及防治的研究与进展[J]. 中国医药科学, 2020, 10(02):37-40. MA L, CHEN S S. Research and progress on the pathogenesis and prevention of radiation-induced brain injury[J]. China Medicine and Pharmacy, 2020,10(02):37-40. [17] Piao J, Major T, Auyeung G, et al. Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation[J]. Cell Stem Cell, 2015, 16(2):198-210. [18] 廖欢, 王鸿轩, 彭英. 间充质干细胞通过调控TLR信号通路减轻放射所致BV2小胶质细胞炎症反应[J]. 中华神经医学杂志, 2017, 16(03):269-273. LIAO H, WANG H X, PENG Y. Mesenchymal stem cells mitigate inflammatory response in BV2 microglial cells caused by radiation via modulating toll-like receptor signal pathway[J]. Chinese Journal of Neuromedicine, 2017, 16(03):269-273. [19] ZHOU D, HUANG X, XIE Y, et al. Astrocytes-derived VEGF exacerbates the microvascular damage of late delayed RBI[J]. Neuroscience, 2019, 408:14-21. [20] Hayashi T, Hayashi I, Shinohara T, et al. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH[J]. Mutat Res, 2004, 556(1-2):83-91. [21] Mikkelsen R B, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms[J]. Oncogene, 2003, 22(37):5 734-5 754. [22] 硼中子俘获治疗[J].中国肿瘤临床与康复,2019,26(04):509. Boron neutron capture therapy[J]. Chinese Journal of Clinical Oncology and Rehabilitation, 2019, 26(04):509. [23] 王淼, 童永彭. 硼中子俘获治疗的进展及前景[J]. 同位素, 2020, 33(01):14-26. WANG M, TONG Y P. The progress and prospect of boron neutron capture therapy[J]. Journal of Isotopes, 2020, 33(01):14-26. [24] 江海燕, 储德林. 硼中子俘获治癌的技术进展及关键问题[J]. 物理通报, 2014, (04):114-116. JIANG H Y, CHU D L. The progression and key issues on treatment for cancer by means of boron neutron capture therapy technology[J]. Physics Bulletin, 2014, (04):114-116. [25] Aliru M L, Schoenhals J E, Venkatesulu B P, et al. Radiation therapy and immunotherapy: what is the optimal timing or sequencing?[J]. Immunotherapy, 2018, 10(4):299-316. [26] Brooks E D, Schoenhals J E, Tang C, et al. Stereotactic ablative radiation therapy combined with immunotherapy for solid tumors[J]. Cancer J, 2016, 22(4):257-266. [27] Sharabi A B, Lim M, DeWeese T L, et al. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy[J]. Lancet Oncol, 2015, 16(13): e498-e509. [28] 黄金铭, 于宁文. ~(125)Ⅰ放射性粒子治疗癌症研究进展[J/OL]. 同位素, 1-13[2020-05-29]. https://kns-cnki-net.webvpn.cams.cn/kcms/detail/11.2566.tl.20200228.1101.008.html. HUANG J M, YU N W. Progress of permanent seed implantation using 125Ⅰ-seeds for cancer therapy[J/OL]. Journal of Isotopes, 1-13[2020-05-29]. https://kns-cnki-net.webvpn.cams.cn/kcms/detail/11.2566.tl.20200228.1101.008.html. [29] SUN Y, MIAO H, ZHANG L, et al. FePt-Cys nanoparticles induce ROS-dependent cell toxicity, and enhance chemo-radiation sensitivity of NSCLC cells in vivo and in vitro[J]. Cancer letters, 2018, 418:27-40. [30] Kleinberg L, Sloan L, Grossman S, et al. Radiotherapy, lymphopenia, and host immune capacity in glioblastoma: A potentially actionable toxicity associated with reduced efficacy of radiotherapy[J]. Neurosurgery, 2019, 85(4):441-453. [31] 张威, 唐劲天, 左焕琮. 高压氧疗对脑损伤治疗作用机制的研究进展[J]. 科技导报, 2009, 27(20):111-115. ZHANG W, TANG J T, ZUO H Z. Research progress on the mechanism of the HBOT therapeutic effect for the brain injury[J]. Sci Technol Rev, 2009, 27(20): 111-115. [32] 张晓雷, 郭灵常. 高压氧治疗高原地区贝尔面瘫疗效观察[J]. 临床耳鼻咽喉科杂志, 1999, (07):44. ZHANG X L, GUO L C. Observation on the effect of hyperbaric oxygen on bell’s facial paralysis in plateau area[J]. J Clin Otorhinolaryngol Head Neck Surg, 1999, (07):44. [33] Feldmeier J J. Hyperbaric oxygen therapy and delayed radiation injuries (soft tissue and bony necrosis): 2012 update[J]. Undersea Hyperb Med, 2012, 39(6): 1 121-1 139. [34] Furuse M, Nonoguchi N, Kawabata S, et al. Delayed brain radiation necrosis: pathological review and new molecular targets for treatment[J]. Med Mol Morphol, 2015, 48(4): 183-190. [35] 张海博, 梁海乾, 涂悦, 等. 放射性脑损伤的研究现状[J]. 山东医药, 2014, 54(26):95-97. ZHANG H B, LIANG H Q, ZHANG S, et al. Research status of radioactive brain injury[J]. Shandong Med J, 2014, 54(26):95-97. [36] Chao S T, Ahluwalia M S, Barnett G H, et al. Challenges with the diagnosis and treatment of cerebral radiation necrosis[J]. Int J Radiat Oncol Biol Phys, 2013, 87(3): 449-457. [37] 伍梦思, 刘华, 肖安琪. 通窍化痰活血方治疗早期迟发型放射性脑损伤30例临床观察[J]. 湖南中医杂志, 2019, 35(03):1-3. WU M S, LIU H, XIAO A Q. Clinical effect of Tongqiao Huatan Huoxue prescription in treatment of early-stage late-onset radiation-induced brain injury: An analysis of 30 cases[J]. Hunan J Tradit Chin Med, 2019, 35(03):1-3. [38] Kale A, Piskin, Bas Y, et al. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats[J]. J Radiat Res, 2018, 59(4):404-410. [39] TONG F, ZHANG J, LIU L, et al. Corilagin attenuates radiation-induced brain injury in mice[J]. Mol Neurobiol, 2016, 53(10):6 982-6 996. [40] ZHANG Y, CHENG Z, WANG C, et al. Neuroprotective effects of Kukoamine a against radiation-induced rat brain injury through inhibition of oxidative stress and neuronal apoptosis[J]. Neurochem Res,2016, 41(10):2 549-2 558. [41] LU K, ZHANG C, WU W, et al. Rhubarb extract has a protective role against radiation-induced brain injury and neuronal cell apoptosis[J]. Mol Med Rep, 2015, 12(2):2 689-2 694. [42] GAN L, WANG Z H, ZHANG H, et al. Protective effects of shikonin on brain injury induced by carbon ion beam irradiation in mice[J]. Biomed Environ Sci, 2015, 28(2):148-151. [43] Amir Abbas Momtazi-Borojeni, Faezeh Ghasemi, Amirreza Hesari, et al. Anti-cancer and radio-sensitizing effects of curcumin in nasopharyngeal carcinoma[J]. Current Pharmaceutical Design, 2018, 24(19):2 121-2 128. [44] Motallebzadeh E, Tameh A A, Zavareh S A T, et al. Neuroprotective effect of melatonin on radiation-induced oxidative stress and apoptosis in the brainstem of rats [published online ahead of print, 2020 Apr 23][J]. J Cell Physiol, 2020, 10.1002/jcp.29722. doi:10.1002/jcp.29722 [45] ZHOU A Y, SONG B W, FU C Y, et al. Acanthopanax senticosus reduces brain injury in mice exposed to low linear energy transfer radiation[J]. Biomed Pharmacother, 2018, 99:781-790. [46] 马薇, 舒庆, 周丹, 等.益脉康片对放射性脑损伤小鼠保护作用及机制研究[J]. 药物评价研究, 2019, 42(03):450-455. MA W, SHU Q, ZHOU D, et al. Protective effects and main mechanism of Yimaikang tablet on radiation-induced brain injury in mice[J]. Drug Eval Res, 2019, 42(03):450-455. [47] 黄越, 陈乃耀,赵雪聪, 等. 氧化应激参与放射性脑损伤的研究进展[J]. 神经解剖学杂志, 2019, 35(02):221-224. HUANG Y, CHEN N Y, ZHAO X C, et al. Research progress on the role of oxidative stress in radioactive brain injury[J]. Chin J Neuroanat, 2019, 35(02): 221-224. [48] YAN R, SUN S, YANG J, et al. Nanozyme-based bandage with single-atom catalysis for brain trauma[J]. ACS Nano, 2019, 13(10):11 552-11 560. [49] MU X, WANG J, LI Y, et al. Redox trimetallic nanozyme with neutral environment preference for brain injury[J]. ACS Nano, 2019, 13(2):1 870-1 884. [50] YAN R, SUN S, YANG J, et al. Nanozyme-based bandage with single-atom catalysis for brain trauma[J]. ACS Nano, 2019, 13(10):11 552-11 560. [51] HE H, SHI X, WANG J, et al. Reactive oxygen species-induced aggregation of nanozymes for neuron injury[J]. ACS Appl Mater Interfaces, 2020, 12(1):209-216. [52] LV S, LONG W, CHEN J, et al. Dual pH-triggered catalytic selective Mn clusters for cancer radiosensitization and radioprotection[J]. Nanoscale, 2020, 12(2):548-557. [53] Caplan A I. Why are MSCs therapeutic? New data: new insight[J]. J Pathol, 2009, 217(2):318-24. [54] Bronckaers A, Hilkens P, Martens W, et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis[J]. Pharmacol Ther, 2014, 143(2): 181-196. [55] Soria B, Martin-M A, Aguilera Y, et al. Human mesenchymal stem cells prevent neurological complications of radiotherapy[J]. Front Cell Neurosci, 2019, 13:204. [56] Ullah M, Liu D D, Thakor A S. Mesenchymal stromal cell homing: mechanisms and strategies for improvement[J]. Science, 2019, 15:421-438. [57] Siu A, Wind J J, Iorgulescu J B, et al. Radiation necrosis following treatment of high grade glioma—A review of the literature and current understanding[J]. Acta Neurochir (Wien), 2012, 154(2): 191-201. [58] Murovic J A, Chang S D. The pathophysiology of cerebral radiation necrosis and the role of laser interstitial thermal therapy[J]. World Neurosurg, 2015, 83(1): 23-26. [59] KANG J Y, WU C, Tracy J, et al. Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy[J]. Epilepsia, 2016, 57(2): 325-334. [60] Patel P, Patel N V, Danish S F. Intracranial MR-guided laser-induced thermal therapy: single-center experience with the Visualase thermal therapy system[J]. J Neurosurg, 2016, 125(4):853-860. [61] Rao M S, Hargreaves E L, Khan A J, et al. Magnetic resonance-guided laser ablation improves local control for postradiosurgery recurrence and/or radiation necrosis[J]. Neurosurgery, 2014, 74(6): 658-667. [62] Rammo, Asmaro, Schultz. The safety of magnetic resonance imaging-guided laser interstitial thermal therapy for cerebral radiation necrosis[J]. J Neurooncol, 2018, 138(3): 609-617. |