[1] 李锦, 柳加成, 张艳霞, 等. 我国辐射环境监测标准体系研究[J]. 核电子学与探测技术, 2015, 35(1): 50-54. LI J, LIU J C, ZHANG Y X, et al. The research of China’s radiation enviroment monitoring standard system [J], Nuclear Electronics & Detection Technology, 2015, 35(1): 50-54. [2] 陆巍巍, 岳会国, 李宏宇, 等. 我国现行辐射环境监测标准体系的缺项分析[J]. 核安全, 2013, 12(4): 24-28. LU W W, YUE H G, LI H Y, et al. The revision requirements of China’s radiation environment monitoring standard system[J], Nuclear Safety, 2013, 12(4):24-28. [3] 环境保护部. “十二五”全国辐射环境监测体系建设工作方案[S]. 2013. [4] 环境保护部. “十三五”全国辐射环境监测体系建设工作方案(征求意见稿)[S]. 2016. [5] 国家能源局. 能源领域行业标准化管理办法(试行)(国能局科技(2009)54号)[S]. 2009. [6] 黄彦君, 郭贵银, 张兵, 等. 核电厂排放的85Kr的分析方法及剂量评估[J]. 辐射防护, 2017, 37(1): 73-79. HUANG Y J, GUO G Y, ZHANG B, et al.Analysis and dose assessment of 85Kr released from NPP [J]. Radiation Protection, 2017, 37(1):73-79. [7] 上官志洪, 黄彦君, 沙向东, 等. 核电厂液态流出物中63Ni的排放、剂量评估及监测方法研究[J]. 辐射防护, 2017, 37(6): 445-452. SHANGGUAN Z H, HUANG Y J, SHA X D, et al.Investigation on discharge, dose assessment and monitoring methods of 63Ni in liquid effleunt from nuclear power plants [J]. Radiation Protection, 2017, 37(6): 445-452. [8] US NRC. Measuring, evaluating, and reporting radioactive material in liquid and gaseous effluents and solid waste:RG 1.21[S].US NRC, 2009. [9] 黄彦君, 上官志洪, 曾帆, 等. 中美核电厂流出物监测与排放管理要求对比分析[J]. 辐射防护, 2017, 37(5): 418-424. HUANG Y J, SHANGGUAN Z H, ZENG F, et al. A comparative study on regulatory requirements for emission and monitoring of radioactive effluents from nuclear power plants in China and USA [J]. Radiation Protection,2017, 37(5):418-424. [10] IEC. 2002 Equipment for continuous monitoring of radioactivity in gaseous effluents (5 parts):IEC 60761[S]. 2002. [11] IEC. 2007 Radiation protection instrumentation-equipment for sampling and monitoring radioactive noble gases:IEC 62302[S]. 2007. [12] ANSI. Sampling and monitoring releases of airborne radioactive substances from the stacks and ducts of nuclear facilities:ANSI/HPS N13.1—2011[S]. 2011. [13] 黄彦君, 赵锋, 王海峰, 等. 核电厂应急监测能力评估指标体系构建[J]. 环境监测管理与技术, 2016, 28(5): 1-5. HUANG Y J, ZHAO F, WANG H F, et al. Capability assessment index system of emergency monitoring for nuclear power Plant [J]. The Administration and Technique of Environmental Monitoring, 2016, 28(5):1-5. [14] 李锦, 唐丽丽, 喻正伟, 等. 福岛核事故后核电厂应急监测技术改进[J]. 核电子学与探测技术, 2015, 35(10): 1 038-1 042. LI J, TANG L L, YU Z W, et al. Technical improvements of the emergency monitoring in nuclear power plants after Fukushima nuclear Accident [J]. Nuclear Electronics & Detection Technology, 2015, 35(10): 1 038-1 042. [15] ISO. Water quality—gross alpha activity—test method using thick source:ISO 9696—2017[S]. 2017. [16] ISO. Water quality—gross beta activity in non-saline water—test method using thick source:ISO 9697—2015[S]. 2015. [17] ISO. Water quality—measurement of gross alpha and beta activity concentration in non-saline water—liquid scintillation counting method:ISO 11704—2010[S]. 2010. [18] ISO. Measurement of radioactivity in the environment-soil-part 6: measurement of gross alpha and gross beta activities:ISO 18589.6—2009[S]. 2009. [19] 贺毅, 吴连生, 陈超峰, 等. 水中去钾总β分析方法研究进展[C]//中国辐射防护学会2014学术年会. 合肥, 2014. [20] HUANG Y J, ZENG F, ZHANG B, et al. Method validation and uncertainty evaluation of organically bound tritium analysis in environmental sample[J]. Journal of Environmental Radioactivity, 2014, 134: 83-88. [21] 肖军. CaCO3粉末悬浮法测定空气中14C的准确度影响因素讨论[J]. 辐射防护通讯, 2003, 23(4): 42-45. XIAO J. Discussion on accuracy of counting 14C as CaCO3 in air [J]. Radiation Protection Bullitin, 2003, 23(4): 42-45. [22] 郭贵银, 黄彦君, 张兵, 等. 用湿法氧化预处理进行水中14C分析研究[J]. 辐射防护, 2015, 35(6): 339-344. GUO G Y, HUANG Y J, ZHANG B, et al.Analysis of 14C in environmental water based on wet-oxidation pretreatiment [J]. Radiation Protection, 2015, 35(6): 339-344. [23] AFNOR. Nuclear energy-measurement of environmental radioactivity-Part 2: measurement of carbon 14 activity by liquid scintillation in carbon matrices in the environment:NF M60-812-2—2011[S]. 2011. [24] 吴连生, 曾帆, 王萦, 等. 锶特效树脂用于环境水样品中90Sr的富集、分离和测量方法研究[J]. 核化学与放射化学, 2015, 37(6): 476-483. WU L S, ZENG F, WANG Y, et al.Application of Sr-specific resin on enrichment, separation and determination of 90Sr in environmental water [J]. Journal of Nuclaer and Radiochemistry, 2015, 37(6): 476-483. [25] 吴连生, 陈超峰, 张兵, 等. 液闪谱仪对90Sr和90Y的测量方法研究[J]. 原子能科学技术, 2016, 50(1): 46-53. WU L S, CHEN C F, ZHANG B, et al. Study on determinatio of 90Sr and 90Y by liquid scintillation spectrometry [J]. Atomic Energy Science and Technology, 2016, 50(1): 46-53. [26] ISO. Water quality-strontium 90 and strontium 89-test methods using liquid scintillation counting or proportional counting:ISO 13160—2012[S]. 2012. [27] IAEA. IAEA Analytical quality in nuclear application No. IAEA/AQ/27 rapid simultaneous determination of 89Sr and 90Sr in milk a procedure using cerenkov and scintillation counting [S]. 2013. [28] 吴连生, 曾帆, 左伟伟, 等. 镍特效树脂分离富集核电厂液态流出物中的63Ni及其测量方法研究[J]. 原子能科学技术, 2018, 52(1): 30-36. WU L S, ZENG F, ZUO W W, et al.Application of Ni specific resin on separation, enrichment and determination of 63Ni in effluent of nuclear power plant [J]. Atomic Energy Science and Technology, 2018, 52(1): 30-36. [29] ASTM. Standard test method for determination of radioactive iron in water:ASTM D4922—2016[S]. 2016. [30] ISO. Measurement of radioactivity in the environment-soil-part 7: In situ measurement of gamma-emitting radionuclides:ISO 18589-7—2013[S]. 2013. [31] ISO. Determination of the characteristic limits (decision threshold, detection limit and limits of the confidence interval) for measurements of ionizing radiation—fundamentals and application:ISO 11929—2010[S]. 2010. [32] ISO. General requirements for the competence of testing and calibration laboratories:ISO/IEC 17025—2017[S]. 2017. |