[1] István Szöke, Micheal N Louka, Tom-Robert Bryntesen, et al. Comprehensive support for nuclear decommissioning based on 3D simulation and advanced user interface technologies[J]. Journal of Nuclear Science and Technology, 2015, 52(3): 371-387. [2] Silva Marcio Henrique da, Andre Cotellidio Espirito Santo, Eugenio Rangel Marins, el al. Using virtual reality to support the physical security of nuclear facilities[J]. Progress in Nuclear Energy, 2015, 78:19-24. [3] Vermeersch F. ALARA pre-job studies using the VISIPLAN 3D ALARA planning tool[J]. Radiation Protection Dosimetry, 2005, 115(1-4): 294-297. [4] Prokhorets I M. Point-kernel method for radiation fields simulation[J]. Problems of Atomic Science and Technology, 2007, N5: 106-109. [5] István Szöke, Micheal N Louka, Tom-Robert Bryntesen, et al. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments[J]. Journal of Radiological Protection, 2014, 34: 389-416. [6] Vishwanath P Singh, Badiger N M. Comprehensive study on energy absorption buildup factors and exposure buildup factors for photon energy 0.015 to 15 MeV up to 40 MFP penetration depth for gel dosimeters[J]. Radiation Physics and Chemistry, 2014, 103: 234-242. [7] Sari F Alkhatib, Chang Je Park, Hae Yong Jeong, al et. Layer-splitting technique for testing the recursive scheme for multilayer shields gamma ray buildup factors[J]. Annals of Nuclear Energy, 2016, 88: 24-29. [8] Kulwinder Singh Mann, Jyoti Singla. Investigations of mass attenuation coefficients and exposure buildup factors of some low-Z building materials[J]. Annals of Nuclear Energy, 2012, 43: 157-166. [9] Luis Durani. Update to ANSI/ANS-6.4.3—1991 for low-Z and compound materials and review of particle transport theory[D]. University of Nevada Las Vegas, 2009. [10] Ruggieri L P, Sanders C. Update to ANSI/ANS-6.4.3—1991 gamma-Ray buildup factors for High-Z engineering materials (Part I) [D]. Trans. Am. Nucl. Soc, 99, November 2008. [11] American Nuclear Society. Gamma-ray attenuation coefficients and buildup factors for engineering materials:ANSI/ANS-6.4.3—1991[S]. La Grange Park, 1991. [12] Uei-Tyng Lin, Shiang-Huei Jiang. A dedicated empirical formula for γ-ray buildup factors for a point isotropic source in stratified shields[J]. Radiation Physics and Chemistry, 1996, 48(4): 389-401. [13] Suteau C, Chiron M. An iterative method for calculation gamma-ray build-up factors in multilayer shields[J]. Radiation Protection Dosimetry, 2005, 116(1-4): 489-492. [14] Kulwinder Singh Mann, Jyoti Singla. Gamma-ray double-layered transmission exposure buildup factors of some engineering materials, a comparative study[J]. Radiation Physics and Chemistry, 2016, 125: 27-40. [15] 中国科学院工程力学研究所. γ射线屏蔽参数手册[M]. 北京: 原子能出版社, 1976: 98. Institute of Engineering Mechanics, Chinese Academy of Sciences. Handbook of gamma-ray shielding parameters[M]. Beijing: Atomic Energy Press, 1976: 98. [16] 李华, 赵原, 刘立业, 等. 基于MCNP 对γ 射线吸收剂量累积因子的计算与研究[J]. 辐射防护, 2017, 37(3): 161-168. LI Hua, ZHAO Yuan, LIU Liye, et al. Research on gamma ray buildup factor for energy absorption based on MCNP[J]. Radiation Protection, 2017, 37(3): 161-168. [17] 赵原, 李华, 刘立业, 等. 不同计算模型对水中γ射线吸收剂量累积因子的影响[J]. 辐射防护, 2019, 39(4): 274-279. ZHAO Yuan, LI Hua, LIU Liye, et al. Effect of different models on gamma-ray buildup factor for energy absorption in water[J]. Radiation Protection, 2019, 39(4): 274-279. |