[1] Singh V K, Newman V L, Romaine P L, et al. Use of biomarkers for assessing radiation injury and efficacy of countermeasures[J]. Expert Rev Mol Diagn. 2016, 16(1):65-81. DOI: 10.1586/14737159.2016.1121102. [2] Anuranjani, Bala M. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - implication in modification of radiation damage[J]. Redox Biology, 2014, 2(8):32-46. DOI: 10.1016/j.redox.2014.02.008. [3] Antonic V, Rabbani Z N, Jackson I L, et al. Subcutaneous administration of bovine superoxide dismutase protects lungs from radiation-induced lung injury[J]. Free Radic Res, 2015, 49(10):1259-1268. DOI: 10.3109/10715762.2015.1066501. [4] Malaker K, Das R M. The effect of superoxide dismutase on the pathogenesis of radiation-induced pulmonary damage in the rat[J]. Pharmacol Ther, 1988, 39(1-3):327-330. DOI: 10.1016/0163-7258(88)90079-4. [5] Borgstahl G E O, Oberley-Deegan R E. Superoxide dismutases (SODs) and SOD mimetics[J]. Antioxidants (Basel), 2018, 7(11):156-172. DOI: 10.3390/antiox7110156. [6] Parascandolo A, Rappa F, Cappello F, et al. Extracellular superoxide dismutase expression in papillary thyroid cancer mesenchymal stem/stromal cells modulates cancer cell growth and migration[J]. Sci Rep, 2017, 7(4):14-16. DOI: 10.1038/srep41416. [7] Fisher C L, Hallewell R A, Roberts V A, et al. Probing the structural basis for enzyme-substrate recognition in Cu,Zn superoxide dismutase[J]. Free Radic Res Commun, 1991, 12(1):287-296. DOI: 10.3109/10715769109145797. [8] Ribera-Fonseca A, Inostroza-Blancheteau C, Cartes P, et al. Early induction of Fe-SOD gene expression is involved in tolerance to Mn toxicity in perennial ryegrass[J]. Plant Physiol Biochem, 2013, 7(3):77-82. DOI: 10.1016/j.plaphy.2013.08.012. [9] Azadmanesh J, Borgstahl G E O. A review of the catalytic mechanism of human manganese superoxide dismutase[J]. Antioxidants (Basel), 2018, 7(2):25-36. DOI: 10.3390/antiox7020025. [10] Miao L, St Clair D K. Regulation of superoxide dismutase genes: implications in disease[J]. Free Radic Biol Med, 2009, 47(4):344-356. DOI: 10.1016/j.freeradbiomed.2009.05.018. [11] Marklund S L. Human copper-containing superoxide dismutase of high molecular weight[J]. Proc Natl Acad Sci U S A, 1982, 79:7634-7638. DOI: 10.1073/pnas.79.24.7634. [12] Batinić-Haberle I, Rebouças J S, Spasojević I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential[J]. Antioxid Redox Signal, 2010, 13(6):877-918. DOI: 10.1089/ars.2009.2876. [13] Bonetta R. Potential therapeutic applications of MnSODs and SOD-mimetics[J]. Chemistry, 2018, 24(20):5032-5041. DOI: 10.1002/chem.201704561. [14] Allawzi A, McDermott I, Delaney C, et al. Redistribution of EC-SOD resolves bleomycin-induced inflammation via increased apoptosis of recruited alveolar macrophages[J]. FASEB J, 2019, 33(12):13465-13475. DOI: 10.1096/fj.201901038RR. [15] Paital B, Sablok G, Kumar S, et al. Investigating the conformational structure and potential site interactions of SOD inhibitors on Ec-SOD in marine mud crab scylla serrata: A molecular modeling approach[J]. Interdiscip Sci, 2016, 8(3):312-318. DOI: 10.1007/s12539-015-0110-2. [16] Levin E D. Extracellular superoxide dismutase (EC-SOD) quenches free radicals and attenuates age-related cognitive decline: opportunities for novel drug development in aging[J]. Curr Alzheimer Res, 2005, 2(2):191-196. DOI: 10.2174/1567205053585710. [17] Cheng Y K, Hwang G Y, Lin C D, et al. Altered expression profile of superoxide dismutase isoforms in nasal polyps from nonallergic patients[J]. Laryngoscope, 2006, 116(3):417-422. DOI: 10.1097/01.MLG.0000199738.37455.55. [18] Rola R, Zou Y, Huang T T, et al. Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis[J]. Free Radic Biol Med, 2007, 42(8):1133-1145. DOI: 10.1016/j.freeradbiomed.2007.01.020. [19] Zou Y, Corniola R, Leu D, et al. Extracellular superoxide dismutase is important for hippocampal neurogenesis and preservation of cognitive functions after irradiation[J]. Proc Natl Acad Sci USA, 2012, 109(52):21522-21527. DOI: 10.1073/pnas.1216913110. [20] Kang S K, Rabbani Z N, Folz R J, et al. Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury[J]. Int J Radiat Oncol Biol Phys, 2003, 57(4):1056-1066. DOI: 10.1016/s0360-3016(03)01369-5. [21] Lazarov O, Hollands C. Hippocampal neurogenesis: Learning to remember[J]. Prog Neurobiol, 2016, 138(140):1-18. DOI: 10.1016/j.pneurobio.2015.12.006. [22] Zou Y, Leu D, Chui J, et al. Effects of altered levels of extracellular superoxide dismutase and irradiation on hippocampal neurogenesis in female mice[J]. Int J Radiat Oncol Biol Phys, 2013, 87(4):777-784. DOI: 10.1016/j.ijrobp.2013.08.002. [23] Lierova A, Jelicova M, Nemcova M, et al. Cytokines and radiation-induced pulmonary injuries[J]. J Radiat Res, 2018, 59(6):709-753. DOI: 10.1093/jrr/rry067. [24] Trott K R, Herrmann T, Kasper M. Target cells in radiation pneumopathy[J]. Int J Radiat Oncol Biol Phys, 2004, 58(2):463-469. DOI: 10.1016/j.ijrobp.2003.09.045. [25] Beach T A, Groves A M, Johnston C J, et al. Recurrent DNA damage is associated with persistent injury in progressive radiation-induced pulmonary fibrosis[J]. Int J Radiat Biol, 2018, 94(12):1104-1115. DOI: 10.1080/09553002.2018.1516907. [26] Shrishrimal S, Kosmacek E A, Oberley-Deegan R E. Reactive oxygen species drive epigenetic changes in radiation-induced fibrosis[J]. Oxid Med Cell Longev, 2019, 2019:1-27.DOI: 10.1155/2019/4278658. [27] Rabbani Z N, Anscher M S, Folz R J, et al. Overexpression of extracellular superoxide dismutase reduces acute radiation induced lung toxicity[J]. BMC Cancer, 2005, 5(1):59-67. DOI: 10.1186/1471-2407-5-59. [28] Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, et al. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation[J]. Plos One, 2011, 6(1):14-86. DOI: 10.1371/journal.pone.0014486. [29] Chinnadurai R, Forsberg M H, Kink J A, et al. Use of MSCs and MSC-educated macrophages to mitigate hematopoietic acute radiation syndrome[J]. Curr Stem Cell Rep, 2020, 6(3):77-85. DOI: 10.1007/s40778-020-00176-0. [30] Sah S K, Agrahari G, Kim T Y. Insights into superoxide dismutase 3 in regulating biological and functional properties of mesenchymal stem cells[J]. Cell Biosci, 2020, 10(1):1-12. DOI: 10.1186/s13578-020-00386-3. [31] Agrahari G, Sah S K, Kim T Y. Superoxide dismutase 3 protects mesenchymal stem cells through enhanced autophagy and regulation of FoxO3a trafficking[J]. BMB Rep, 2018, 51(7):344-349. DOI: 10.5483/bmbrep.2018.51.7.078. [32] Gan J, Meng F, Zhou X, et al. Hematopoietic recovery of acute radiation syndrome by human superoxide dismutase-expressing umbilical cord mesenchymal stromal cells[J]. Cytotherapy, 2015, 17(4):403-417. DOI: 10.1016/j.jcyt.2014.11.011. [33] Hu K X, Sun Q Y, Guo M, et al. The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury[J]. Br J Radiol, 2010, 83(985):52-58. DOI: 10.1259/bjr/61042310. [34] Matsumura Y, Ananthaswamy H N. Toxic effects of ultraviolet radiation on the skin[J]. Toxicol Appl Pharmacol, 2004, 195(3):298-308. DOI: 10.1016/j.taap.2003.08.019. [35] Mancebo S E, Wang S Q. Skin cancer: role of ultraviolet radiation in carcinogenesis[J]. Rev Environ Health, 2014, 29(3):265-273. DOI: 10.1515/reveh-2014-0041. [36] Kim H Y, Sah S K, Choi S S, et al. Inhibitory effects of extracellular superoxide dismutase on ultraviolet B-induced melanogenesis in murine skin and melanocytes[J]. Life Sci, 2018, 210: 201-208. DOI: 10.1016/j.lfs.2018.08.056. [37] Nguyen N H, Tran G B, Nguyen C T. Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases[J]. J Mol Med (Berl), 2020, 98(1):59-69. DOI: 10.1007/s00109-019-01845-2. [38] Kim Y, Kim B H, Lee H, et al. Regulation of skin inflammation and angiogenesis by EC-SOD via HIF-1α and NF-κB pathways[J]. Free Radic Biol Med, 2011, 51(11):1985-1995. DOI: 10.1016/j.freeradbiomed.2011.08.027. [39] Choung B Y, Byun S J, Suh J G, et al. Extracellular superoxide dismutase tissue distribution and the patterns of superoxide dismutase mRNA expression following ultraviolet irradiation on mouse skin[J]. Exp Dermatol, 2004, 13(11):691-699. DOI: 10.1111/j.0906-6705.2004.00209.x. [40] Singh M, Alavi A, Wong R, et al. Radiodermatitis: A review of our current understanding[J]. Am J Clin Dermatol, 2016, 17(3):277-292. DOI: 10.1007/s40257-016-0186-4. [41] Amber K T, Shiman M I, Badiavas E V. The use of antioxidants in radiotherapy-induced skin toxicity[J]. Integr Cancer Ther, 2014, 13(1):38-45. DOI: 10.1177/1534735413490235. [42] Doctrow S R, Lopez A, Schock A M, et al. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin[J]. J Invest Dermatol, 2013, 133(4):1088-1096. DOI: 10.1038/jid.2012.410. [43] Manzanas García A, LÓpez Carrizosa M C, Vallejo Ocaũa C, et al. Superoxidase dismutase (SOD) topical use in oncologic patients: treatment of acute cutaneous toxicity secondary to radiotherapy[J]. Clin Transl Oncol, 2008, 10(3):163-167. DOI: 10.1007/s12094-008-0174-0. [44] Baskar R, Lee K A, Yeo R, et al. Cancer and radiation therapy: current advances and future directions[J]. Int J Med Sci, 2012, 9(3):193-199. DOI: 10.7150/ijms.3635. Epub 2012 Feb 27. [45] Gandhi S, Chandna S. Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies[J]. Cancer Metastasis Rev, 2017, 36(2):375-393. DOI: 10.1007/s10555-017-9669-x. [46] Blyth B J, Cole A J, MacManus M P, et al. Radiation therapy-induced metastasis: radiobiology and clinical implications[J]. Clin Exp Metastasis, 2018, 35(4):223-236. DOI: 10.1007/s10585-017-9867-5. [47] Che M, Wang R, Li X, et al. Expanding roles of superoxide dismutases in cell regulation and cancer[J]. Drug Discov Today, 2016, 21(1):143-149. DOI: 10.1016/j.drudis.2015.10.001. [48] Sibenaller Z A, Welsh J L, Du C, et al. Extracellular superoxide dismutase suppresses hypoxia-inducible factor-1α in pancreatic cancer[J]. Free Radic Biol Med, 2014, 69(3):357-366. DOI: 10.1016/j.freeradbiomed.2014.02.002. [49] Laukkanen M O. Extracellular superoxide dismutase: growth promoter or tumor suppressor?[J]. Oxid Med Cell Longev, 2016, 20(16):1-9. DOI: 10.1155/2016/3612589. [50] Griess B, Tom E, Domann F, et al. Extracellular superoxide dismutase and its role in cancer[J]. Free Radic Biol Med, 2017, 11(2):464-479. DOI: 10.1016/j.freeradbiomed.2017.08.013. [51] Mapuskar K A, Anderson C M, Spitz D R, et al. Utilizing superoxide dismutase mimetics to enhance radiation therapy response while protecting normal tissues[J]. Semin Radiat Oncol, 2019, 29(1):72-80. DOI: 10.1016/j.semradonc.2018.10.005. [52] Cline J M, Dugan G, Bourland J D, et al. Post-irradiation treatment with a superoxide dismutase mimic, MnTnHex-2-PyP5+, mitigates radiation injury in the lungs of non-human primates after whole-thorax exposure to ionizing radiation[J]. Antioxidants (Basel), 2018, 7(3):40. DOI: 10.3390/antiox7030040. [53] Decraene D, Smaers K, Gan D, et al. A synthetic superoxide dismutase/catalase mimetic (EUK-134) inhibits membrane-damage-induced activation of mitogen-activated protein kinase pathways and reduces p53 accumulation in ultraviolet B-exposed primary human keratinocytes[J]. J Invest Dermatol, 2004, 122(2):484-491. DOI: 10.1046/j.0022-202X.2004.22215.x. [54] Zanoni M, Cortesi M, Zamagni A, et al. The role of mesenchymal stem cells in radiation-induced lung fibrosis[J]. Int J Mol Sci, 2019, 20(16):3876. DOI: 10.3390/ijms20163876. [55] Wei L, Zhang J, Yang Z L, et al. Extracellular superoxide dismutase increased the therapeutic potential of human mesenchymal stromal cells in radiation pulmonary fibrosis[J]. Cytotherapy, 2017, 19(5):586-602. DOI: 10.1016/j.jcyt.2017.02.359. [56] Makino J, Ogasawara R, Kamiya T, et al. Royal jelly constituents increase the expression of extracellular superoxide dismutase through histone acetylation in monocytic THP-1 cells[J]. J Nat Prod, 2016, 79(4):1137-1143. DOI: 10.1021/acs.jnatprod.6b00037. [57] Adachi T, Yamada H, Hara H, et al. Increase of urinary extracellular-superoxide dismutase level correlated with cyclic adenosine monophosphate[J]. FEBS Lett, 1999, 458(3):370-374. DOI: 10.1016/s0014-5793(99)01185-0. |