辐射防护 ›› 2022, Vol. 42 ›› Issue (1): 11-17.
龙淑琴, 谢焱石, 谭凯旋, 张明华, 单健, 王升
收稿日期:
2021-07-08
出版日期:
2022-01-20
发布日期:
2022-01-24
通讯作者:
谢焱石。E-mail: xie_yanshi@qq.com
作者简介:
龙淑琴(1997—),女,2019年毕业于北部湾大学地理科学专业,现为南华大学地质资源与地质工程专业硕士研究生。E-mail:1373521381@qq.com
基金资助:
LONG Shuqin, XIE Yanshi, TAN Kaixuan, ZHANG Minghua, SHAN Jian, WANG Sheng
Received:
2021-07-08
Online:
2022-01-20
Published:
2022-01-24
摘要: 随着对氡气危害认识的加深,花岗岩作为生产、生活上接触较多的天然辐射来源,其氡析出特征对人居环境的辐射影响得到广泛关注。本文从岩石的原生特性和次生变化两方面对花岗岩的氡析出进行文献综述,发现花岗岩氡析出与岩石化学成分、矿物成分和成因类型等原生特性以及次生风化和蚀变导致的放射性核素分布、矿物颗粒大小以及岩石微裂隙等因素密切相关。研究表明,铀镭活度与花岗岩氡析出表现出线性相关,但受铀赋存矿物类型的影响,矿物成分的具体影响还需进一步研究,可能与其构造背景或者物质来源有关。岩石次生变化对花岗岩氡析出的影响主要表现为风化和蚀变使得放射性核素迁移到颗粒表面和岩石裂隙等有利于氡析出的位置,而颗粒变小比表面积增大以及岩石内表面积和孔隙率增加使得铀镭发生富集和逃逸,从而最终促进岩石氡的析出。岩石原生特性和次生变化对花岗岩的氡析出起着重要的影响作用,铀镭活度可以作为花岗岩氡析出率潜力的预测指标,而对于矿物成分和岩石的次生变化则是研究花岗岩氡析出的重要潜在因素。故此,未来需要系统研究并定量描述岩石化学、矿物成分和次生变化,并据此建立合理有效的岩石氡析出模型,帮助更全面地掌握岩石中氡析出规律,为地下工程及人居环境的氡防护提供理论依据。
中图分类号:
龙淑琴, 谢焱石, 谭凯旋, 张明华, 单健, 王升. 花岗岩氡析出影响因素研究进展[J]. 辐射防护, 2022, 42(1): 11-17.
LONG Shuqin, XIE Yanshi, TAN Kaixuan, ZHANG Minghua, SHAN Jian, WANG Sheng. Research progress on influencing factors of radon exhalation in granite[J]. RADIATION PROTECTION, 2022, 42(1): 11-17.
[1] | Nuccetelli C, Leonardi F, Trevisi R. Building material radon emanation and exhalation rate: Need of a shared measurement protocol from the european database analysis [J]. Journal of Environmental Radioactivity, 2020,225:106438.<br /> |
[2] | Kuzmanović P, Todorović N, Nikolov J, et al. Assessment of radiation risk and radon exhalation rate for granite used in the construction industry [J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 321(2):565-577.<br /> |
[3] | Mostafa A M A. Assessment of the possible radiological hazard caused from marble and granite tails commercially available in Egypt [J]. International Journal of Low Radiation, 2016, 10(3):244-254.<br /> |
[4] | Nikolić Mladen D, Simović Rodoljub D. Radon exhalation rates of some granite used in Serbia [J]. Nuclear Technology and Radiation Protection, 2015, 30(2):145-148.<br /> |
[5] | Topçu N, Biçak D, Çam S, et al. Radon exhalation rate from building materials using CR-39 nuclear track detector [J]. Indoor and Built Environment, 2013, 22(2):384-387.<br /> |
[6] | 李晓燕,郑宝山,王燕,等. 我国不同类型地下工程中的氡水平[J].地球与环境,2006,(04):61-65.<br /> |
LI Xiaoyan, ZHENG Baoshan, WANG Yan, et al. Radon levels in different types of underground buildings in China[J]. Earth and Environment, 2006,(04):61-65.<br /> | |
[7] | 刘富强,王宁波,陈刚,等.天池水电站地下洞室群施工期氡气的监测与防治[J].东北水利水电,2016,34(10):12-14.<br /> |
LIU Fuqiang, WANG Ningbo, Chen Gang, et al. Radon monitoring and prevention during construction of underground caverns of Tianchi Hydropower Station[J]. Water Resources & Hydropower of Northeast China, 2016,34(10):12-14.<br /> | |
[8] | Dentoni V, Pelo S D, AghdamM M, et al. Natural radioactivity and radon exhalation rate of Sardinian dimension stones [J]. Construction and Building Materials, 2020, 247:118377.<br /> |
[9] | Hassan N M, Ishikawa T, Hosoda M, et al. The effect of water content on the radon emanation coefficient for some building materials used in Japan [J]. Radiation Measurements, 2010, 46(2):232-237.<br /> |
[10] | Banerjee K S, Basu A, Guin R, et al. Radon (<sup>222</sup>Rn) level variations on a regional scale from the Singhbhum Shear Zone, India: A comparative evaluation between influence of basement U-activity and porosity [J]. Radiation Physics and Chemistry, 2010, 80(5):614-619.<br /> |
[11] | Steinitz G, Piatibratova O, Barbosa S M. Radon daily signals in the Elat Granite, southern Arava, Israel [J]. John Wiley & Sons, Ltd, 2007, 112(B10211).<br /> |
[12] | Chao C Y, Tung T C. Radon emanation of building material—Impact of back diffusion and difference between one-dimensional and three-dimensional tests [J]. Health Physics, 1999, 76(6):675-681.<br /> |
[13] | Al-Jarallah M I, Fazal-ur-Rehman, Musazay M S, et al. Correlation between radon exhalation and radium content in granite samples used as construction material in Saudi Arabia [J]. Radiation Measurements, 2005, 40(2-6):625-629.<br /> |
[14] | Kobeissi M A, El-Samad O, Rachidi I. Health assessment of natural radioactivity and radon exhalation rate in granite used as building materials in Lebanon [J]. Radiation Protection Dosimetry, 2013, 153(3):342-351.<br /> |
[15] | Nassiri P A,Ebrahimi H A, Shalkouhi P J B.Evaluation of radon exhalation rate from granite stone[J]. Journal of Scientific and Industrial Research, 2011, (3):230-231.<br /> |
[16] | Al-Jarallah M. Radon exhalation from granite used in Saudi Arabia [J]. Journal of Environmental Radioactivity, 2001, 53(1):91-98.<br /> |
[17] | Harb S, Ahmed K, SaharElnobi N. Effect of grain size on the radon exhalation rate and emanation coefficient of soil, phosphate and building material samples [J]. Journal of Nuclear and Particle Physics, 2016, 6(4):80-87.<br /> |
[18] | El-Dine N W, El-Shershaby A, Ahmed F, et al. Measurement of radioactivity and radon exhalation rate in different kinds of marbles and granite [J]. Applied Radiation and Isotopes, 2001, 55(6): 853-860.<br /> |
[19] | Singh H, Singh J, Singh S, et al. Radon exhalation rate and uranium estimation study of some soil and rock samples from Tusham ring complex, India using SSNTD technique [J]. Radiation Measurements, 2008, 43:S459-S462.<br /> |
[20] | Gomes M E P, Neves L J P F, Coelho F, et al. Geochemistry of granite and metasediments of the urban area of Vila Real (northern Portugal) and correlative radon risk [J]. Environmental Earth Sciences, 2011, 64(2):497-502.<br /> |
[21] | Pereira A J S C, Neves L J P F, Godinho M M, et al. Natural radioactivity in Portugal: Influencing geological factors and implications for land use planning [J]. Radioproteccao-S-Joao-da-Talha, 2003, (2-3): 109-120.<br /> |
[22] | Roux L, Bezuidenhout, Smit. The influence of different types of granite on indoor radon concentrations of dwellings in the South African West Coast Peninsula [J]. Journal of Radiation Research and Applied Sciences, 2019, 12(1):375-382.<br /> |
[23] | Bezuidenhout J. Measuring naturally occurring uranium in soil and minerals by analysing the 352 keV gamma-ray peak of <sup>214</sup>Pb using a NaI(Tl)-detector [J]. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 2013, 80: 1-6.<br /> |
[24] | Akihiro S, Katsumi H, Yuu I, et al. Radioactivity and radon emanation fraction of the granite sampled at Misasa and Badgastein [J]. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 2008, 66(5):648-52.<br /> |
[25] | Ramadan K A, Ubeid K F. Measurement of radon exhalation rates from different rock types and construction materials (Gaza Strip, Palestine) [J]. Yerbilimleri Dergisi, 2018, (3):195-206.<br /> |
[26] | Akihiro S, Yuichi N, Katsumi H, et al. Differences of natural radioactivity and radon emanation fraction among constituent minerals of rock or soil [J]. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 2010, 68(6):1180-1184.<br /> |
[27] | Pinto Primal V, Sudeep Kumara K, Karunakara N. Mass exhalation rates, emanation coefficients and enrichment pattern of radon, thoron in various grain size fractions of monazite rich beach placers [J]. Radiation Measurements, 2020, 130(C): 106220.<br /> |
[28] | Tkaczyk A H, Koch R, Ipbüker C, et al. Correlation between radon release, radioactivity and mineralogy: a case study of Estonian black sands [J]. Journal of Radioanalytical and Nuclear Chemistry: An International Journal Dealing with All Aspects and Applications of Nuclear Chemistry, 2020, 326(1):75-86.<br /> |
[29] | Ball T K, Cameron D G, Colman T B, et al. Abstract: Radon and geology [J]. Environmental Geochemistry and Health, 1991, 13(3):148-148.<br /> |
[30] | Moura C L, Artur A C, Bonotto D M, et al. Natural radioactivity and radon exhalation rate in Brazilian igneous rocks [J]. Applied Radiation and Isotopes, 2011, 69(7):1094-1099.<br /> |
[31] | Hellmuth K H, Siitari-Kauppi M, Arvela H, et al. Radon emanation from fresh, altered and disturbed granitic rock characterized by <sup>14</sup>C-PMMA impregnation and autoradiography [J]. Applied Radiation and Isotopes, 2017, 127: 195-208.<br /> |
[32] | Domingos F, Pereira A. Implications of alteration processes on radon emanation, radon production rate and W-Sn exploration in the Panasqueira ore district [J]. Science of the Total Environment, 2018, (May 1):825-840.<br /> |
[33] | Amaral P G Q, Galembeck T M B, Bonotto D M, et al. Uranium distribution and radon exhalation from Brazilian dimension stones [J]. Applied Radiation and Isotopes, 2012, (4): 808-817.<br /> |
[34] | Sroor A, Afifi S Y, Abdel-Haleem A S, et al. Environmental pollutant isotope measurements and natural radioactivity assessment for North Tushki area, south western desert, Egypt [J]. Applied Radiation and Isotopes, 2002, 57(3):427-436.<br /> |
[35] | 王南萍. 中国天然石材放射性水平及影响因素 [J]. 辐射防护通讯, 2001, 21(3): 22-24.<br /> |
WANG Nanping.Radioactivity levels in natural rocks and affecting factors [J].Radiation Protection Bulletin, 2001, 21(3): 22-24.<br /> | |
[36] | Morawska L, Phillips Colin R. Dependence of the radon emanation coefficient on radium distribution and internal structure of the material [J]. Pergamon, 1993, 57(8):1783-1797.<br /> |
[37] | Pereira D, Neves L, Pereira A, et al. A radiological study of some ornamental stones: the bluish granite from Extremadura (Spain) [J]. Natural Hazards and Earth System Science, 2012, 12(150):395-401.<br /> |
[38] | Krishnaswami S, Seidemann D.E. Comparative study of <sup>222</sup>Rn, <sup>40</sup>Ar, <sup>39</sup>Ar and <sup>37</sup>Ar leakage from rocks and minerals: Implications for the role of nanopores in gas transport through natural silicates [J]. Pergamon, 1988, 52(3):655-658.<br /> |
[39] | Scheib C, Appleton J D, Miles J C H, et al. Geological controls on radon potential in England [J]. Proceedings of the Geologists’ Association, 2013, 124(6): 910-928.<br /> |
[40] | Sakoda A, Ishimori Y, Yamaoka K. A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash[J]. Applied Radiation and Isotopes, 2011, 69(10):1422-1435.DOI: 10.1016/j.apradiso.2011.06.009.<br /> |
[41] | EK J, EK B M. Radium and uranium concentrations in two eskers with enhanced radon emission [J]. Environment International, 1996, 22:495-498.<br /> |
[42] | Sato J, Nakamura T. Leaching of radon from weathered granite into water [J]. Radioisotopes-Tokyo, 1993, (12): 667-675.<br /> |
[43] | Megumi K, Mamuro T. Concentration of uranium series nuclides in soil particles in relation to their size [J]. John Wiley & Sons, Ltd, 1977, 82(2):353-356.<br /> |
[44] | Efstathiou M, Sarrou I, Pashalidis I. Emanation studies of radium containing materials by a simple radon monitoring system [J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(1):673-677.<br /> |
[45] | Funtua I I, Onojah A, Jonah S A, et al. Radon emanation study of uranium ore samples from N. E. Nigeria [J]. Applied Radiation and Isotopes, 1997, 48(6):867-869.<br /> |
[46] | Breitner D N, Turtiainen T, Arvela H, et al. Multidisciplinary analysis of finnish esker sediment in radon source identification [J]. Science of the Total Environment, 2008, 405(1):129-139.<br /> |
[47] | Sakoda A, Hanamoto K, Ishimori Y, et al. Effects of some physical conditions on leaching rate of radon from radioactive minerals originating from some hot springs [J]. Radiation Measurements, 2007, 43(1):106-110.<br /> |
[48] | 徐立鹏. 单轴压力下花岗岩氡气析出量与扩散迁移的实验研究[D]. 成都理工大学, 2013.<br /> |
XU Lipeng. An experimental study of granite radon in precipitates quantityand diffusion transfer under axial pressure[D]. Chengdu University of Technology, 2013.<br /> | |
[49] | Mollo S, Tuccimei P, Heap M J, et al. Increase in radon emission due to rock failure: An experimental study [J]. Geophysical Research Letters, 2011, 38(14):L14304.<br /> |
[50] | 邹功江, 葛良全, 赵剑锟, 等. 岩石氡析出的瞬态响应[J]. 成都理工大学学报(自然科学版), 2015, 42(03): 372-376.<br /> |
ZOU Gongjiang, GE Liangquan, ZHAO Jiankun, et al. Research for radon transient response[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2015,42(03): 372-376.<br /> | |
[51] | YI H Y, ZHOU H W, WANG R, et al. On the relationship between creep strain and permeability of granite: Experiment and model investigation [J]. Energies, 2018, 11(10): 2859.<br /> |
[52] | Sarrou I, Pashalidis I. Radon exhalation from granite countertops and expected indoor radon levels[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311(1):913-916.<br /> |
[53] | Pereira A, Lamas R, Miranda M, et al. Estimation of the radon production rate in granite rocks and evaluation of the implications for geogenic radon potential maps: A case study in Central Portugal[J]. Journal of Environmental Radioactivity, 2017, 166:270-277.<br /> |
[54] | Nicolas A, Girault F, Schubnel A, et al. Radon emanation from brittle fracturing in granite under upper crustal conditions [J]. Geophysical Research Letters, 2014, 41(15):5436-5443. |
[1] | 周梓丹, 肖德涛, 肖拥军, 孙昌昊, 宋时雨, 王郦彬, 李伟伟. 车江铜矿室外氡水平研究[J]. 辐射防护, 2019, 39(3): 202-206. |
[2] | 陈刚, 胡鹏华, 李先杰, 任建军, 康剑翘. 基于换气量和氡析出率计算的排氡风量在某水电地下工程通风设计中的比较研究[J]. 辐射防护, 2019, 39(1): 27-32. |
[3] | 张辉, 徐乐昌, 李先杰. 铀矿山废石堆与尾矿库覆盖抑氡实验效果对比研究[J]. 辐射防护, 2017, 37(5): 387-392. |
[4] | 邓慧娟, 肖德涛, 丘寿康, 何正忠, 居治豪, 肖峰. 膨润土/石灰粉改良土壤的降氡效果[J]. 辐射防护, 2017, 37(4): 280-286. |
[5] | 叶勇军, 代鑫涛, 丁德馨, 江俊廷, 李志. 含氡放射性水体氡析出规律的理论研究[J]. 辐射防护, 2017, 37(1): 56-61. |
|