[1] Bae Y S, Oh H, Rhee S G, et al. Regulation of reactive oxygen species generation in cell signaling[J]. Mol Cells, 2011, 32(6): 491-509. DOI:10.1007/s10059-011-0276-3. [2] REN F, WANG K, ZHANG T, et al. New insights into redox regulation of stem cell self-renewal and differentiation[J]. Biochim Biophys Acta, 2015, 1850(8):1518-1526. DOI: 10.1016/j.bbagen,2015.02.017. [3] HUANG T T, Leu D, ZOU Y. Oxidative stress and redox regulation on hippocampal-dependent cognitive functions[J]. Arch Biochem Biophys, 2015, 576: 2-7. DOI: 10.1016/j.abb.2015.03.014. [4] Rola R, ZOU Y, HUANG T T, et al. Lack of extra-cellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis[J]. Free Radical Biology and Medicine, 2007, 42:1133-1145.DOI:10.1016/j.freeradbiomed.2007.01.020. [5] Losada-Barreiro S, Bravo-Díaz C. Free radicals and polyphenols: The redox chemistry of eurodegenerative diseases[J]. Eur J Med Chem, 2017, 133: 379-402. DOI: 10.1016/j.ejmech.2017.03.061. [6] Stepien K M, Heaton R, Rankin S, et al. Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders[J]. J Clin Med, 2017, 6(7): 71. DOI: 10.3390/jcm6070071. [7] Morimoto B H, Koshland D E. Induction and expression of long- and short-term neurosecretory potentiation in a neural cell line[J]. Neuron, 1995, 15(1): 875-878. DOI:10.1016/0896-6273(95)90082-9. [8] Gondi V, Pugh S L, Tome W A, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial[J]. J Clin Oncol, 2014, 32(34): 3810-3816. DOI:10.1200/JCO.2014.57.2909. [9] Bond A M, Ming G L, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later[J]. Cell Stem Cell, 2015, 17(4):385-395. DOI:10.1016/j.stem.2015.09.003. [10] Bellinzona M, Gobbel G T, Shinohara C, et al. Apoptosis is induced in the subependyma of young adult rats by ionizing irradiation[J].Neurosci Lett, 1996,208(3): 163-166. DOI:10.1016/0304-3940(96)12572-6. [11] Daynac M, Chicheportiche A, Pineda J R, et al. Quiescent neural stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage[J]. Stem Cell Res, 2013, 11(1): 516-528.DOI:10.1016/j.scr.2013.02.008. [12] Monje M L, Mizumatsu S, Fike J R, et al. Irradiation induces neural precursor-cell dysfunction[J]. Nat Med, 2002, 8(9): 955-962. DOI:10.1038/nm749. [13] Parihar V K, Limoli C L. Cranial irradiation compromises neuronal architecture in the hippocampus[J]. Proc Natl Acad Sci, 2013, 110(31): 12 822-12 827. DOI:10.1073/pnas.1307301110. [14] Deepmala, Slattery J, Kumar N, et al. Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review[J]. Neurosci Biobehav Rev, 2015, 55: 294-321. DOI:10.1016/j.neubiorev.2015.04.015. [15] Caceres L G, Aon Bertolino L, Saraceno G E, et al. Hippocampal-related memory deficits and histological damage induced by neonatal ionizing radiation exposure. Role of oxidative status[J]. Brain Res, 2010, 1312: 67-78. DOI:10.1016/j.brainres.2009.11.053. [16] WANG X K, Michaelis E K. Selective neuronal vulnerability to oxidative stress in the brain[J]. Aging Neurosci, 2010, 2(12): 1-13. DOI:10.3389/fnagi.2010.00012. [17] Malhotra J D, Kaufman R J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword[J].Antioxid Redox Signal, 2007, 9(12): 2277-2294. DOI:10.1089/ars.2007.1782. [18] Zafarullah M, LI W Q, Sylvester J, et al. Molecular mechanisms of N-acetylcysteine actions[J]. Cell Mol Life Sci, 2003, 60 (1): 6-20. DOI:10.1007/s000180300001. [19] Valko M, Rhodes C J, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chem Biol Interact, 2006, 160(1): 1-40. DOI:10.1016/j.cbi.2005.12.009. [20] Neal R, Matthews R H, Lutz P, et al. Antioxidant role of N-acetyl cysteine isomers following high dose irradiation[J]. Free Radic Biol Med, 2003, 34(6): 689-695. DOI:10.1016/s0891-5849(02)01372-2. [21] Martinez M, Hernandez A I, Martinez N. N-acetylcysteine delays age-associated memory impairment in mice: role in synaptic mitochondria[J]. Brain Res, 2000, 855(1): 100-106. DOI:10.1016/S0006-8993(99)02349-5. [22] LU M, GONG X. Upstream reactive oxidative species (ROS) signals in exogenous oxidative stress-induced mitochondrial dysfunction[J]. Cell Biol Int, 2009, 33(6): 658-664. DOI:10.1016/j.cellbi.2009.03.009. [23] Mates J M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology[J]. Toxicology, 2000, 153(1-3): 83-104. DOI:10.1016/s0300-483x(00)00306-1. [24] Sharma S, Raghuvanshi B P S, Shukla S. Toxic effects of lead exposure in rats:involvement of oxidative stress, genotoxic effect, and the beneficial role of N-acetylcysteine supplemented with selenium[J]. J Environ Pathol Toxicol Oncol, 2014, 33(1): 19-32. DOI:10.1615/JEnvironPatholToxicolOncol.2014009712. [25] Nakata K, Kawase M, Ogino S, et al. Effects of age on levels of cysteine, glutathione and related enzyme activities in livers of mice and rats and an attempt to replenish hepatic glutathione levels of mouse with cysteine derivatives[J]. Mech Ageing Dev, 1996, 90(3): 195-207. DOI:10.1016/0047-6374(96)01771-X. [26] Habib G M, Shi Z Z, Lieberman M W. Glutathione protects cells against arsenite-induced toxicity[J]. Free Radic Biol Med, 2007, 42(2): 191-201. DOI:10.1016/j.freeradbiomed.2006.10.036. [27] Ozaras R, Tahan V, Aydin S, et al. N-acetylcysteine attenuates alcohol-induced oxidative stress in the rat[J]. World J Gastroenterol, 2003, 9(1): 125-128. DOI:10.1016/S0016-5085(08)80572-0. [28] Reliene R, Fischer E, Schiestl R H. Effect of N-acetylcysteine on oxidative DNA damage and the frequency of DNA deletions in Atm-deficient mice[J]. Cancer Res, 2004, 64(5): 5 148-5 153. DOI:10.1158/0008-5472.CAN-04-0442. [29] Cohen G M, Arcy D M. Free radical mediated cell toxicity by redox cycling chemicals[J]. British Journal of Cancer Supplement, 1987, 8(8):46-52. [30] Ebadi M, Govitrapong P, Sharma S, et al. Ubiquinone (coenzyme q 10) and mitochondria in oxidative stress of Parkinson’s disease[J]. Biol Signals Recept, 2001, 10(3-4): 224-253. DOI:10.1159/000046889. [31] Pohl O G,Agostino M,Dharmarajan A,et al. Crosstalk between cellular redox state and the anti-apoptotic protein Bcl-2[J]. Antioxid Redox Signal, 2018, 29(13): 1 215-1 236.DOI:10.1089/ars.2017.7414. [32] LIU Q S, DENG R,LI S,et al. Ellagic acid protects against neuron damage in ischemic stroke through regulating the ratio of Bcl-2/Bax expression[J]. Appl Physiol Nutr Metab, 2017, 42(8): 855-860. DOI:info:doi/10.1139/apnm-2016-0651. [33] Kristen A V,Ackermann K,Buss S,et al. Inhibition of apoptosis by the intrinsic but not the extrinsic apoptotic pathway in myocardial ischemia-reperfusion[J]. Cardiovasc Pathol, 2013, 22(4): 280-286.DOI:10.1016/j.carpath.2013.01.004. [34] Cheema A K, Suman S, Kaur P, et al. Long-term differential changes in mouse intestinal metabolomics after gamma and heavy ion radiation exposure[J]. PLoS One, 2014, 9(1): e87079. DOI:10.1371/journal.pone.0087079. [35] CHEN W, ZHAO Z, LI L, et al. Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway[J]. Free Radic Biol Med, 2008, 45(1): 60-72. DOI:10.1016/j.freeradbiomed.2008.03.013. [36] Mansour H H, Shouman S A. Effect of N-acetylcysteine on γ-radiation-induced cytotoxicity in human hepatocellular carcinoma cells[J]. Biomedicine & Aging Pathology, 2014, 4(4): 317-321. DOI:10.1016/j.biomag.2014.07.010. [37] LI J, MENG Z, ZHANG G, et al. N-acetylcysteine relieves oxidative stress and protects hippocampus of rat from radiation-induced apoptosis by inhibiting caspase-3[J]. Biomedicine & Pharmacotherapy, 2015, 70: 1-6. DOI:10.1016/j.biopha.2014.12.029. [38] Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of caspase activation during apoptosis[J]. Annu Rev Cell Dev Biol, 1999, 15(1): 269-290. DOI:10.1146/annurev.cellbio.15.1.269. |