辐射防护 ›› 2024, Vol. 44 ›› Issue (1): 1-9.
赵勇1,2, 张桂锋3
收稿日期:
2022-06-30
出版日期:
2024-01-20
发布日期:
2024-02-05
作者简介:
赵勇(1984—),男,2014年毕业于西安科技大学安全技术及工程专业,获博士学位,现为中国原子能科学研究院核安全研究所在站博士后。E-mail:zy6863368@163.com
基金资助:
ZHAO Yong1,2, ZHANG Guifeng3
Received:
2022-06-30
Online:
2024-01-20
Published:
2024-02-05
摘要: 随着核电的发展,天然铀需求量增大,地表尾矿大量堆积而产生的氡污染成为不可忽视的问题,如何能更加有效地降低铀尾矿氡析出量具有重要意义。一般采用地表堆积后覆盖的方法减小铀尾矿造成的地面环境危害,而氡的迁移过程经历在被覆盖材料迁移和覆盖材料中迁移两个阶段,因此研究氡迁移规律成为解决问题的关键内容。本文总结并评述了国内外学者针对氡析出影响因素、氡迁移理论、覆盖控制方法和效果、覆盖参量方面的研究,发现目前虽对氡析出机理和影响因素进行了全面分析,但是氡析出过程中多因素耦合机理和作用过程还需要更多的深入研究;覆盖材料主要为天然材料和人工合成材料,目前常采用的是天然材料,其中红土添加膨润土、砂质亚黏土、红土均为良好的降氡材料,后续还需要更多的研究,从而找到有效控制氡并对生态环境影响最小的覆盖材料。
中图分类号:
赵勇, 张桂锋. 氡析出迁移及覆盖控制研究进展[J]. 辐射防护, 2024, 44(1): 1-9.
ZHAO Yong, ZHANG Guifeng. Research progress on radon migration and coverage control[J]. RADIATION PROTECTION, 2024, 44(1): 1-9.
[1] 徐磊, 钱建平, 唐专武. 我国铀矿废渣石污染特点及治理方法[J]. 中国矿业, 2013, 22(1): 61-64. XU Lei, QIAN Jianping, TANG Zhuanwu. A study of features and methodology of waste treatment in uranium mines of china[J].China Mining Magazine, 2013, 47(10):1674-1679. [2] 张展适, 李满根, 杨亚新, 等. 赣、粤、湘地区部分硬岩型铀矿山辐射环境污染及治理现状[J]. 铀矿冶, 2007, 26(4): 191-196. ZHANG Zhanshi, LI Mangen, YANG Yaxin, et al. Radiation contamination and treatment of some hard-rock-type uranium mines in Gan, Yue and Xiang areas[J]. Uranium Mining and Metallurgy, 2007, 26(4): 191-196. [3] Hassan N M, Hosoda M, Ishikawa T, et al. Radon migration process and its influence factors; review[J]. Japanese Journal of Health Physics, 2009, 44(2): 218-231. [4] Sahu P, Panigrahi D C, Mishra D P. A comprehensive review on sources of radon and factors affecting radon concentration in underground uranium mines[J]. Environmental Earth Sciences, 2016, 75(7): 1-19. [5] Bossew P. The radon emanation power of building materials, soils and rocks[J]. Applied Radiation and Isotopes, 2003, 59(5-6): 389-392. [6] Zhuo W, Iida T, Furukawa M. Modeling radon flux density from the earth’s surface[J]. Journal of Nuclear Science and Technology, 2006, 43(4): 479-482. [7] Strong K P, Levins D M. Effect of moisture content on radon emanation from uranium ore and tailings[J]. Health Physics, 1982, 42(1): 27-32. [8] Shweikani R, Giaddui T G, Durrani S A. The effect of soil parameters on the radon concentration values in the environment[J]. Radiation Measurements, 1995, 25(1-4): 581-584. [9] Rogers V C, Nielson K K. Correlations for predicting air permeabilities and 222Rn diffusion coefficients of soils[J]. Health Physics, 1991, 61(2): 225-230. [10] Hosoda M, Shimo M, Sugino M, et al. Effect of soil moisture content on radon and thoron exhalation[J]. Journal of Nuclear Science and Technology, 2007, 44(4): 664-672. [11] Wang C, Xie D, Yang X, et al. Quantification of the effect of temperature difference between concrete and indoor air, and water content in concrete on radon exhalation[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 328(1): 39-47. [12] Schery S D, Whittlestone S, Hart K P, et al. The flux of radon and thoron from Australian soils[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D6): 8567-8576. [13] 李向阳, 刘晓璐, 兰明, 等.含水率和粒度分形分布对铀尾矿库覆土层氡析出规律的影响研究[J]. 安全与环境学报, 2021, 21(5): 2209-2215. LI Xiangyang, LIU Xiaolu, LAN Ming, et al. Study on the influence of water content and particle size fractal distribution on radon exhalation in overburden soil layer of uranium tailings pond[J]. Journal of Safety and Environment, 2021, 21(5): 2209-2215. [14] Iskandar D, Yamazawa H, Iida T. Quantification of the dependency of radon emanation power on soil temperature[J]. Applied Radiation and Isotopes, 2004, 60(6): 971-973. [15] Markkanen M, Arvela H. Radon emanation from soils[J]. Radiation Protection Dosimetry, 1992, 45(1-4): 269-272. [16] Tuccimei P, Moroni M, Norcia D. Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italy with accumulation chambers and a continuous solid state alpha detector: influence of particle size, humidity and precursors concentration[J]. Applied Radiation and Isotopes, 2006, 64(2): 254-263. [17] Hosoda M, Yamamoto Y, Harada K, et al. Experimental interpretation of physical and chemical characteristics of soil material upon the radon and thoron exhalation rate[J]. Japanese Journal of Health Physics, 2007, 42(1): 89-97. [18] Lee S C, Kim C K, Lee D M, et al. Natural radionuclides contents and radon exhalation rates in building materials used in South Korea[J]. Radiation Protection Dosimetry, 2001, 94(3): 269-274. [19] Barton T P, Ziemer P L. The effects of particle size and moisture content on the emanation of Rn from coal ash[J]. Health Physics, 1986, 50(5): 581-588. [20] Maraziotis E A. Theoretical evaluation of the 222Rn emanation coefficient for coal fly ash[J]. Health Physics, 1987, 52(3): 297-302. [21] Kalkwarf D R, Jackson P O, Kutt J C. Emanation coefficients for Rn in sized coal fly ash[J]. Health Physics, 1985, 48(4): 429-436. [22] Morawska L, Phillips C R. Dependence of the radon emanation coefficient on radium distribution and internal structure of the material[J]. Geochimica et Cosmochimica Acta, 1993, 57(8): 1783-1797. [23] 冯玮, 王永才, 邓禹仁, 等. 饱水岩石超声振氡实验研究[J].地震地质,1981(2):1-7+84. FENG Wei, WANG Yongcai, DENG Yuren, et al. Experimental study on radon emanation of saturated rock under ultrasonic vibration[J]. Seismology and Geology, 1981(2): 1-7+84. [24] Cai Z, Zhang Q, Li X, et al. Research on radon exhalation characteristics of uranium tailings with cover materials under the coupling load of low-frequency vibration and seepage gradient[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327(1): 359-371. [25] 王永才, 冯玮, 侯彦珍. 低频振动作用下土壤气中氡浓度变化的初步实验研究[J]. 华北地震科学, 1986,4(4): 17-22. WANG Yongcai, FENG Wei, HOU Yanzhen. Preliminary experimental research of the change of radon concentration in soil gases under low frequency[J]. North China Earthquake Sciences, 1986,4(4): 17-22. [26] 杨崇义. 黄土地区爆破地震土氡效应[J]. 西北地震学报, 1984,6(1): 58-64. YANG Chongyi. Effects of explosive earthquake on soil radon in the loess area[J].Northwestern Seismological Journal, 1984,6(1): 58-64. [27] Koarashi J, Amano H, Andoh M, et al. Estimation of 222Rn flux from ground surface based on the variation analysis of 222Rn concentration in a closed chamber[J]. Radiation Protection Dosimetry, 2000, 87(2): 121-131. [28] Schery S D, Gaeddert D H, Wilkening M H. Factors affecting exhalation of radon from a gravelly sandy loam[J]. Journal of Geophysical Research: Atmospheres, 1984, 89(D5): 7299-7309. [29] Porstendörfer J, Butterweck G, Reineking A. Daily variation of the radon concentration indoors and outdoors and the influence of meteorological parameters[J]. Health Physics, 1994, 67(3): 283-287. [30] Lawrence C E, Akber R A, Bollhöfer A, et al. Radon-222 exhalation from open ground on and around a uranium mine in the wet-dry tropics[J]. Journal of Environmental Radioactivity, 2009, 100(1): 1-8. [31] Miklyaev P S, Petrova T B, Shchitov D V, et al. The results of long-term simultaneous measurements of radon exhalation rate, radon concentrations in soil gas and groundwater in the fault zone[J]. Applied Radiation and Isotopes, 2021, 167: 109460. [32] ZHANG L, GUO Q, SUN K. Continuous measurement of radon exhalation rate of soil in Beijing[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(2): 1623-1627. [33] Hubbard L M, Hagberg N. Time-variation of the soil gas radon concentration under and near a Swedish house[J]. Environment International, 1996, 22: 477-482. [34] 叶勇军, 丁德馨, 钟永明, 等.留矿法采场爆破铀矿堆氡渗流析出规律的理论研究[J]. 原子能科学技术, 2013, 47(10): 1674-1679. YE Yongjun, DING Dexin, ZHONG Yongming, et al. Theoretical study on law of radon seepage exhalation from blasted uranium ore heap in shrinkage stope[J]. Atomic Energy Science and Technology, 2013, 47(10): 1674-1679. [35] 梁政, 周星火, 刘畅荣. 铀矿通风与降氡技术研究[J]. 中国安全生产科学技术, 2006,2(2): 53-56. LIANG Zheng, ZHOU Xinghuo, LIU Changrong. Ventilation and radon reduction in uranium mine[J]. Journal of Safety Science and Technology, 2006,2(2): 53-56. [36] Flügge S, Zimens K E. Die bestimmung von korngrossen und diffusionkonstanten aus dem emaniervermogen (Die theorie der emanier-methode)[J]. Zeitschrift für Physikalische Chemie,1939,42B(1):179-220. [37] Crank J. The Mathematics of Diffusion[M]. Oxford:Clarendon Press, 1975. [38] 刘庆成, 程业勋, 章晔, 等. 介质中氡运移的模拟[J]. 华东地质学院学报, 1995(4): 366-370. LIU Qingcheng, CHEN Yexun, ZHANG Ye, et al. Radon transportation simulation in medium[J]. Journal of East China Geological Institute, 1995(4): 366-370. [39] Gingrich J E. Radon as a geochemical exploration tool[J]. Journal of Geochemical Exploration, 1984, 21(1-3): 19-39. [40] 白云生, 林玉飞, 常桂兰. 铀矿找矿中氡的迁移机制探讨[J]. 铀矿地质, 1995(4): 224-231. BAI Yunsheng, LIN Yufei, CHANG Guilan. Discussion on the radon migration mechanism in the prospecting for uranium[J]. Uranium Geology, 1995(4): 224-231. [41] 吴慧山, 白云生, 林玉飞, 等. 氡迁移的接力传递作用[J]. 地球物理学报, 1997(1): 136-142. WU Huishan, BAI Yunsheng, LIN Yufei, et al. The action of relay transmission of the radon migration[J]. Chinese Journal of Geophysics, 1997(1): 136-142. [42] Malmqvist L, Isaksson M, Kristiansson K. Radon migration through soil and bedrock[J]. Geoexploration, 1989, 26(2): 135-144. [43] 刘鸿福, 贾文懿, 王广忠, 等. 氡及其子体运移规律的实验研究[J]. 太原理工大学学报, 1998,29(2):3-7+11. LIU Hongfu, JIA Wenyi, WANG Guangzhong, et al. The experimental studies of Rn and its daughters′ migration law[J]. Journal of Taiyuan University of Technology, 1998,29(2): 3-7+11. [44] 崔宇, 郭锦涛, 王文博. 不同覆盖材料抑制废石堆氡析出试验研究[J]. 铀矿地质, 2021, 37(3): 528-533. CUI Yu, GUO Jintao, WANG Wenbo. Experimental research on inhibiting radon exhalation from waste rock pile with different covering materials[J]. Uranium Geology, 2021, 37(3): 528-533. [45] 谭凯旋, 胡寒桥, 刘泽华, 等. 不同覆盖物抑制铀尾矿氡析出的效果[J]. 矿物学报, 2012, 32(2): 233-237. TAN Kaixuan, HU Hanqiao, LIU Zehua, et al. An Exploration on the effectiveness of suppression of radon exhalation from uranium tailings by using different cover materials[J]. Acta Mineralogica Sinica, 2012, 32(2): 233-237. [46] Ota M, Iida T, Yamazawa H, et al. Suppression of radon exhalation from soil by covering with clay-mixed soil[J]. Journal of Nuclear Science and Technology, 2007, 44(5): 791-800. [47] 邓慧娟, 肖德涛, 丘寿康, 等. 膨润土/石灰粉改良土壤的降氡效果[J]. 辐射防护, 2017, 37(4): 280-286. DENG Huijuan, XIAO Detao, QIU Shoukang, et al. Reduction of radon exhalation rate through soil modified with bentonite/lime powder[J]. Radiation Protection, 2017, 37(4): 280-286. [48] ZHANG Y G, WANG Y, YANG C Y, et al. Study on the reduction of radon exhalation rates of concrete with different activated carbon[C]//Key Engineering Materials. Trans Tech Publications Ltd, 2017: 558-563. [49] Jónás J, Somlai J, Tóth-Bodrogi E, et al. Study of a remediated coal ash depository from a radiological perspective[J]. Journal of Environmental Radioactivity, 2017, 173: 75-84. [50] 叶维荣, 黄强. 降低尾矿砂面氡析出率的实验研究[J]. 工业安全与防尘, 1993 (8): 24-26. [51] 班改革, 戴剑勇. 基于COMSOL的铀尾矿堆单层覆盖治理效果分析[J]. 现代矿业, 2018, 34(3): 215-218. BAN Gaige, DAI Jianyong. Analysis of single layer coverage governance effects of uranium tailings pile based on comsol software[J]. Modern Mining,2018,34(3):215-218. [52] 徐乐昌, 戴兴业, 唐天征, 等. 覆盖材料降氡效果的野外确定[J]. 铀矿冶, 1999,18(3): 179-184. XU Lechang, DAI Xingye, TANG Tianzheng, et al. Determing radon attenuation of covers using field experimentation[J]. Uranium Mining and Metallurgy, 1999,18(3): 179-184. [53] Ghany H A A, El Aassy I E, Ibrahim E M, et al. White sand potentially suppresses radon emission from uranium tailings[J]. Radiation Physics and Chemistry, 2018, 144: 100-105. [54] 徐卫东, 徐啸川, 尧丽丽. 尾矿库覆土效果参数确定[J].环境科学与技术, 2010, 33(6): 128-129+176. XU Weidong, XU Xiaochuan, RAO Lili. To determine thickness of security cover layer in uranium tailings[J]. Environmental Science & Technology, 2010, 33(6): 128-129+176. [55] 王文博, 张晓文, 李录峰. 某铀矿地质勘探设施退役治理覆土试验研究[J]. 西部资源, 2020(2): 71-74. WANG Wenbo, ZHANG Xiaowen, LI Lufeng. The soil cover test for decommissioning treatment of an uranium geological exploration sites[J]. Western Resources, 2020(2): 71-74. [56] 王锦, 刘永, 章求才, 等. 红壤覆盖层性状对铀尾矿库滩面氡析出影响的试验研究[J]. 矿业研究与开发, 2021, 41(3): 159-163. WANG Jin, LIU Yong, ZHANG Qiucai, et al. Experimental study on the influence of red soil overburden properties on radon exhalation from the beach surface of uranium tailings pond[J]. Mining Research and Development, 2021, 41(3): 159-163. [57] DAI Xingwang, CHEN Yifan, CHEN Yan, et al. Effect of thickness and compaction degree of overburden soil on radon reduction for uranium tailings reservoir[J]. Science and Technology of Nuclear Installations, 2021(3):1-8. [58] 周星火,邓文辉.覆土密度对降低氡析出率的影响试验研究[J].铀矿冶,2004,23(1):41-43. ZHOU Xinghuo, DENG Wenhui. Research on the effect of covered soil density on reducing radon emanation rate[J]. Uranium Mining and Metallurgy,2004,23(1):41-43. [59] LI Y, TAN W, TAN K, et al. The effect of laterite density on radon diffusion behavior[J]. Applied Radiation and Isotopes, 2018, 132: 164-169. [60] TAN W, LI Y, TAN K, et al. Fractal theory and field cover experiments: implications for the fractal characteristics and radon diffusion behavior of soils and rocks[J]. Health Physics, 2016, 111(6): 506-512. [61] LIU X, LI X, LAN M, et al. Experimental study on permeability characteristics and radon exhalation law of overburden soil in uranium tailings pond[J]. Environmental Science and Pollution Research, 2021, 28(12): 15248-15258. |
[1] | 金成赫, 赵原, 汪屿, 曹勤剑, 熊万春, 黄明啸, 刘立业, 李岩, 董佳杰, 夏三强. 基于空气荧光的Alpha表面污染测量样机的研制[J]. 辐射防护, 2023, 43(6): 549-555. |
[2] | 王福军, 王海山, 郝建国, 方鹏, 马宏达, 魏晋祥, 梁晓烨, 丁晶洁, 刘作业. 甘肃省某石煤提钒企业伴生放射性污染的调查及分析[J]. 辐射防护, 2023, 43(6): 586-594. |
[3] | 郑国峰, 廖运璇, 冯巨恩, 张爱玲, 商照荣. 矿产资源开发利用辐射环境监管名录及系统[J]. 辐射防护, 2023, 43(6): 642-649. |
[4] | 于淼, 顾钰, 曾晓敏, 柴庆竹, 武铜, 万维进. 核电厂一回路硼碱曲线的研究[J]. 辐射防护, 2023, 43(6): 671-677. |
[5] | 王亚东, 王路生, 马彦, 戴雄新. 鼻擦拭分析在放射性内污染常规监测中的应用探讨[J]. 辐射防护, 2023, 43(6): 687-692. |
[6] | 黄彦君, 上官志洪, 左伟伟. 核电厂流出物排放控制值研究[J]. 辐射防护, 2023, 43(5): 431-437. |
[7] | 顾景智. 核电厂不应被忽视的一个辐射照射源项[J]. 辐射防护, 2023, 43(5): 438-442. |
[8] | 徐侃, 熊扣红, 闫晓俊, 郭喜良, 徐春艳, 高超. 放射性轻微污染物料清洁解控管理实践和思考[J]. 辐射防护, 2023, 43(4): 360-365. |
[9] | 沈福, 张贞, 侯杰, 蒋婧, 刘新华. ISO 2889新、老标准混合均匀处取样代表性的数值分析研究[J]. 辐射防护, 2022, 42(6): 585-592. |
[10] | 李玉芹, 文富平, 卢瑛. β表面污染现场测量技术研究[J]. 辐射防护, 2021, 41(S1): 20-25. |
[11] | 初泉丽, 张亮, 李多宏, 张天宝, 田川, 何佳霖, 武朝辉. 乏燃料后处理厂核材料衡算与控制国际经验及关键技术启示[J]. 辐射防护, 2021, 41(S1): 117-121. |
[12] | 徐卓群. M310核电机组BOSS焊缝作业辐射防护控制[J]. 辐射防护, 2020, 40(6): 640-646. |
[13] | 陈琛祥, 曾进忠, 倪伟, 黄刚, 何俊男. 核电厂典型放射性热点的管理控制与优化[J]. 辐射防护, 2020, 40(6): 613-618. |
[14] | 张菁, 侯磊, 饶贤明, 刘晋瑾, 杜向阳, 张佳, 乔敏娟. 大面积表面污染测量仪主要性能测试与分析[J]. 辐射防护, 2020, 40(6): 556-560. |
[15] | 孙娟, 安毅夫, 连国玺, 高扬, 杨冰. 微生物还原固化技术在铀尾矿(渣)渗水污染防控中的应用[J]. 辐射防护, 2020, 40(4): 308-315. |
|