[1] 廖义相, 严嘉庆, 毛楚元, 等. 含钆有机透明材料的制备及其中子/伽马防护性能[J]. 核技术, 2024, 47(12): 73-81. LIAO Yixiang, YAN Jiaqing, MAO Chuyuan, et al. Preparation of gadolinium-containing organic transparent materials and its neutron/gamma shielding properties[J]. Nuclear Techniques, 2024, 47(12): 73-81. [2] AN Baoyi, DENG Yujie, JIN Zhiwen, et al. Scintillators for neutron detection and imaging: Advances and prospects[J]. Advanced Functional Materials, 2024, 2024: 2422522. [3] Oancea C, Solc J, Bourgouin A, et al. Thermal neutron detection and track recognition method in reference and out-of-field radiotherapy FLASH electron fields using Timepix3 detectors[J]. Physics in Medicine & Biology, 2023, 68(18): 185017. [4] 许小明, 祝利群. 3He正比计数管性能研究[J]. 中国原子能科学研究院年报, 2007: 322-325. [5] 张哲, 王春燕, 王秋晨, 等. 浅谈中国氦气供应链技术壁垒与发展方向[J]. 油气与新能源, 2022, 34(2): 14-19. ZHANG Zhe, WANG Chunyan, WANG Qiuchen, et al. Barries and development directions of helium supply chain in China[J]. Petroleum Planning & Engineering, 2022, 34(2): 14-19. [6] LI Mingxin, GAO Yu, XU Kai, et al. Rational design and comparison of three benzazole-based fluorescent probes for sensitively and reversibly detecting BF3[J]. Dyes and Pigments, 2022, 205: 110558. [7] Kojima T, Katagiri M, Tsutsui N, et al. Neutron scintillators with high detection efficiency[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 529(1/3): 325-328. [8] LIU Linyue, OUYANG Xiao, GAO Runlong, et al. Latest developments in room-temperature semiconductor neutron detectors: prospects and challenges[J]. Science China Physics, Mechanics & Astronomy, 2023, 66: 232001. [9] Omar A, Burdin S, Casse G, et al. GAMBE: thermal neutron detection system based on a sandwich configuration of silicon semiconductor detector coupled with neutron reactive material[J]. Radiation Measurements, 2019, 122: 121-125. [10] Fronk R G, Bellinger S L, Henson L C, et al. Advancements on dual-sided microstructured semiconductor neutron detectors (DSMSNDs)[C]//2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). San Diego, CA, USA: IEEE, 2015: 1-5. [11] Maity A, Grenadier S J, LI A, et al. Hexagonal boron nitride neutron detectors with high detection efficiencies[J]. Journal of Applied Physics, 2018, 123: 044501-1+3. [12] Maity A, Grenadier S J, LI J, et al. High efficiency hexagonal boron nitride neutron detectors with 1 cm2 detection areas[J]. Applied Physics Letters, 2020, 116(14): 142102. [13] 武蕊, 范东海, 康阳, 等. 半导体辐射探测材料与器件研究进展[J]. 人工晶体学报, 2021, 50(10): 1811-1829. WU Rui, FAN Donghai, KANG Yang, et al. Research progress on semiconductor materials and devices for radiation detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1811-1829. [14] Chica D G, HE Yihui, Mccall K M, et al. Direct thermal neutron detection by the 2D semiconductor 6LiInP2Se6[J]. Nature, 2020, 577: 346-349. [15] Kargar A, HONG Huicong, Tower J, et al. LiInSe2 for semiconductor neutron detectors[J]. Frontiers in Physics, 2020, 8: 78. [16] Almohammad M, Li J, Lin J Y, et al. Charge collection and trapping mechanisms in hexagonal boron nitride epilayers[J]. Applied Physics Letters, 2021, 119(22): 221111. [17] Maity A, Doan T C, Li J, et al. Realization of highly efficient hexagonal boron nitride neutron detectors[J]. Applied Physics Letters, 2016, 109(7): 072101. [18] Li J, Dahal R, Majety S, et al. Hexagonal boron nitride epitaxial layers as neutron detector materials[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 654(1): 417-420. [19] Doan T C, Li J, Lin J Y, et al. Growth and device processing of hexagonal Boron nitride epilayers for thermal neutron and deep ultraviolet detectors[J]. AIP Advances, 2016, 6(7): 075213. [20] Maity A, Grenadier S J, Li J, et al. High sensitivity hexagonal Boron nitride lateral neutron detectors[J]. Applied Physics Letters, 2019, 114(22): 222102. [21] Alemoush Z, Hossain N K, Tingsuwatit A, et al. Toward achieving cost-effective hexagonal BN semi-bulk crystals and BN neutron detectors via halide vapor phase epitaxy[J]. Applied Physics Letters, 2023, 122(1): 012105. [22] Maity A, Grenadier S J, Li J,et al. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors[J]. Applied Physics Letters,2017, 111(3). [23] Ahmed K, Dahal R, Weltz A, et al. Metalorganic chemical vapor deposition of hexagonal boron nitride on (001) sapphire substrates for thermal neutron detector applications[J]. Vacuum, 2017, 137: 81-84. [24] Ahmed K, Dahal R, Weltz A, et al. Solid-state neutron detectors based on thickness scalable hexagonal boron nitride[J]. Applied Physics Letters, 2017, 110(2): 023503. [25] Roth M, Mojaev E, Khakhan O, et al. Composite boron nitride neutron detectors[J]. Journal of Crystal Growth, 2014, 401: 791-794. [26] Maity A, Grenadier S J, Li J, et al. Hexagonal boron nitride: epitaxial growth and device applications[J]. Progress in Quantum Electronics, 2021, 76: 100302. [27] Grenadier S J, Maity A, Li J, et al. Origin and roles of oxygen impurities in hexagonal boron nitride epilayers[J]. Applied Physics Letters, 2018, 112: 162103. [28] YU Jiadong, WANG Lai, HAO Zhibiao, et al. Theoretical study on critical thickness of heteroepitaxial h-BN on hexagonal crystals[J]. Journal of Crystal Growth, 2017, 467: 126-131. [29] Umehara N, Masuda A, Shimizu T, et al. Influences of growth parameters on the film formation of hexagonal boron nitride thin films grown on sapphire substrates by low-pressure chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2016, 55(5S): 05FD09. [30] Ivey D G, Wang D, Yang D, et al. Au/Ge/Ni ohmic contacts to n-type InP[J]. Journal of Electronic Materials, 1994, 23(5): 441-446. [31] Negran T J, Kasper H M, Glass A M. Pyroelectric and electrooptic effects in LiInS2 and LiInSe2[J]. Materials Research Bulletin, 1973, 8(6): 743-748. [32] Kamijoh T, Kuriyama K. Single crystal growth and characterization of LiInSe2[J]. Journal of Crystal Growth, 1981, 51(1): 6-10. [33] Kargar A, Tower J, HONG Huicong, et al. Lithium and boron based semiconductors for thermal neutron counting[C]//SPIE Optical Engineering + Applications. San Diego, California, United States: SPIE, 2011: 81421P. [34] Tupitsyn E, Bhattacharya P, Rowe E, et al. Single crystal of LiInSe2 semiconductor for neutron detector[J]. Applied Physics Letters, 2012, 101(20): 202101. [35] Bell Z W, Burger A, Matei L, et al. Neutron detection with LiInSe2[C]//SPIE Optical Engineering + Applications. San Diego, California, United States: SPIE, 2015: 95930D. [36] Belushkin A V, Bogdzel A A, Goloshumova A A, et al. Study of LiInSe2 single crystals for the thermal neutron detection[J]. Journal of Surface Investigation-X-Ray Synchrotron and Neutron Techniques, 2020, 14(1): S15-S18. [37] Stowe A C, Cochran J, Bhattacharya P, et al. Lithium-containing semiconductor crystals for radiation detection[J]. MRS Online Proceedings Library, 2013, 1576: 901. [38] CUI Yunlong, Bhattacharya P, Buliga V, et al. Defects in 6LiInSe2 neutron detector investigated by photo-induced current transient spectroscopy and photoluminescence[J]. Applied Physics Letters, 2013, 103(9): 092104. [39] Wiggins B B, Bell J, Burger A, et al. Investigations of 6LiIn1-xGaxSe2 semi-insulating crystals for neutron detection[C]//SPIE Optical Engineering + Applications. San Diego, California, United States: SPIE, 2015: 95930B. [40] Kargar A, Hong H, Sosa C, et al. 6LiInSe2 and 6LiIn0.5Ga0.5Se2 Semiconductor Thermal Neutron Detectors[C]//2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD). Vancouver, BC, Canada: IEEE, 2023: 1. [41] 张哲人, 朱孟花, 徐亚东. 中子探测用LiInSe2晶体生长及表征[J]. 铸造技术, 2023, 44(1): 43-48. ZHANG Zheren, ZHU Menghua, XU Yadong. Growth and characterization of LiInSe2 crystal for neutron detection[J]. Foundry Technology, 2023, 44(1): 43-48. [42] Egner J C, Groza M, Burger A, et al. Integration of a 6LilnSe2 thermal neutron detector into a CubeSat instrument[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2016, 2(4): 1409437. [43] GUO Lijian, XU Yadong, ZHENG Hongjian, et al. Stoichiometric effects on the photoelectric properties of LiInSe2 crystals for neutron detection[J]. Crystal Growth and Design, 2018, 18(5): 2864-2870. [44] 韩继光, 柴英俊, 李晓明. 直接型卤素钙钛矿X射线探测器结构设计研究进展[J]. 发光学报, 2024, 45(1): 25-43. HAN Jiguang, CHAI Yingjun, LI Xiaoming. Research progress on structure design of direct halogen perovskite X-ray detectors[J]. Chinese Journal of Luminescence, 2024, 45(1): 25-43. [45] Vicini V, Zanettini S, Amadè N S, et al. Optimization of quasi-hemispherical CdZnTe detectors by means of first principles simulation,[J]. Scientific Reports, 2023, 13: 3212. [46] DU Ziwan, LAI Yuxuan, BAI Ruirong, et al. Robust thermal neutron detection by LiInP2Se6 bulk single crystals[J]. Advanced Materials, 2023, 35(24): 2212213. [47] Benkechkache M E A, Hoegberg E K, Kargar A, et al. Front-end electronics of a LiInP2Se6 neutron detector for single crystal diffractometer[C]//2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD). Tampa, FL, USA: IEEE, 2024: 1-1. [48] Veale M C, Sellin P J, Lohstroh A, et al. X-ray spectroscopy and charge transport properties of CdZnTe grown by the vertical Bridgman method[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 576(1): 90-94. [49] Crane T W, Baker M P. Neutron detectors[J]. Passive Nondestructive Assay of Nuclear Materials, 1991, (13): 1-28. [50] Ochs T R, Beatty B L, Bellinger S L, et al. Wearable detector device utilizing microstructured semiconductor neutron detector technology[J]. Radiation Physics and Chemistry, 2019, 155: 164-172. [51] ZHANG Weihua, KANG Hongbin, WANG Yingjie, et al. Development of a portable Single Sphere Neutron Spectrometer[J]. Radiation Measurements, 2021, 140: 106509. [52] Kouzes R T, Ely J H, Lintereur A T, et al. Neutron detection gamma ray sensitivity criteria[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 654(1): 412-416. [53] Ruddy F H, Dulloo A R, Seidel J G, et al. Nuclear reactor power monitoring using silicon carbide semiconductor radiation detectors[J]. Nuclear Technology, 2002, 140(2): 198-208. |