[1] 马悦, 宋联荣, 刘国盛, 等. 二氧化锆:一种多用途的高性能新材料[J]. 当代化工研究, 2021(1):134-138. MA Yue, SONG Lianrong, LIU Guosheng, et al. Zirconium dioxide: A versatile high-performance new material[J]. Modern Chemical Research, 2021(1): 134-138. [2] 郭树军, 董雪平. 一酸一碱法氧氯化锆生产工艺进展[J]. 江西化工, 2013(1):22-25. [3] 张晓静, 丁浩. 锆硅渣制备白炭黑的现状和发展趋势[J]. 中国非金属矿工业导刊, 2011(1):12-14. ZHANG Xiaojing, DING Hao. Present situation of the preparation of amorphous silica using Zr-containing silica residue and its trend[J]. China Non-Metallic Mining Industry Herald, 2011(1): 12-14. [4] 郑国峰, 廖运璇, 柏学凯, 等. 全国伴生放射性矿普查结果分析及监管建议[J]. 环境保护, 2020, 48(18):38-41. ZHENG Guofeng, LIAO Yunxuan, BAI Xuekai, et al. Analysis of the results of the second national pollution source census of NORMs and suggestions for supervision[J]. Environmental Protection, 2020, 48(18): 38-41. [5] 李洋, 罗恺, 陈海龙. 锆及氧化锆行业伴生放射性固体废物再利用辐射环境影响研究[J]. 环境科学与管理, 2021, 46(9):166-169. LI Yang, LUO Kai, CHEN Hailong. EnvironmentalImpacts of recycled associated radioactive solid wastes from zirconium and zirconia industry[J]. Environmental Science and Management, 2021, 46(9): 166-169. [6] Chang S, Lee H K, Kang H B, et al. Decontamination of uranium-contaminated soil by acid washing with uranium recovery[J]. Water, Air, & Soil Pollution, 2021, 232(10):1-10. [7] CHENG Conghui, CHEN Luyao, GUO Kexin, et al. Progress of uranium-contaminated soil bioremediation technology[J]. Journal of Environmental Radioactivity, 2022, 241: 106773. [8] Morrison K D, Zavarin M, Kersting A B, et al. Influence of uranium concentration and pH on U-phosphate biomineralization by Caulobacter OR37[J]. Environmental Science & Technology, 2021, 55(3):1626-1636. [9] Selvakumar R, Ramadoss G, Mridula P M, et al. Challenges and complexities in remediation of uranium contaminated soils: a review[J]. Journal of Environmental Radioactivity, 2018, 192:592-603. [10] Baker M R, Coutelot F M, Seaman J C. Phosphate amendments for chemical immobilization of uranium in contaminated soil[J]. Environment International, 2019, 129: 565-572. [11] SHU Xiaoyan, LI Yaping, HUANG Wenxiao, et al. Rapid vitrification of uranium-contaminated soil: Effect and mechanism[J]. Environmental Pollution, 2020, 263: 114539. [12] ZHONG Juan, HU Xuewu, LIU Xingyu, et al. Isolation and identification of uranium tolerant phosphate-solubilizing Bacillus spp. and their synergistic strategies to U(VI) immobilization[J]. Frontiers in Microbiology, 2021, 12: 676391. [13] Lwin C S, Seo B H, Kim H U, et al. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review[J]. Soil Science and Plant Nutrition, 2018, 64(2): 156-167. [14] WEN Hang, PAN Zezhen, Giammar D, et al. Enhanced uranium immobilization by phosphate amendment under variable geochemical and flow conditions: Insights from reactive transport modeling[J]. Environmental Science & Technology, 2018, 52(10): 5841-5850. [15] ZHU Xiaoli, LV Bingxin, SHANG Xiaoqing, et al. The immobilization effects on Pb, Cd and Cu by the inoculation of organic phosphorus-degrading bacteria (OPDB) with rapeseed dregs in acidic soil[J]. Geoderma, 2019, 350: 1-10. [16] Foster R I, Kim K W, Oh M K, et al. Effective removal of Uranium via phosphate addition for the treatment of uranium laden process effluents[J]. Water Research, 2019, 158: 82-93. [17] Chandwadkar P, Misra H S, Acharya C. Uranium biomineralization induced by a metal tolerant Serratia strain under acid, alkaline and irradiated conditions[J]. Metallomics, 2018, 10(8): 1078-1088. [18] 马楚勤. 煅烧对管状羟基磷灰石固铀性能的影响[J]. 广东化工, 2023, 50(8):35-37. [19] Cooper P, NIE Jing, Larson S L, et al. Uranium adsorption on three nanohydroxyapatites under various biogeochemical conditions[J]. Water, Air, & Soil Pollution, 2021, 232(9): 362. [20] Mehta V S, Maillot F, WANG Zheming, et al. Effect of co-solutes on the products and solubility of uranium (VI) precipitated with phosphate[J]. Chemical Geology, 2014, 364: 66-75. [21] Martinez R J, Beazley M J, Sobecky P A. Phosphate-mediated remediation of metals and radionuclides[J]. Advances in Ecology, 2014: 786929. [22] RUAN Yang, ZHANG Huimin, YU Zijing, et al. Phosphate enhanced uranium stable immobilization on biochar supported nano zero valent iron[J]. Journal of Hazardous Materials, 2022, 424: 127119. [23] Ahmed W, Núñez-Delgado A, Mehmood S, et al. Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: Adsorption behavior and mechanism[J]. Environmental Research, 2021, 201: 111518. [24] Mehta V S, Maillot F, WANG Zheming, et al. Effect of reaction pathway on the extent and mechanism of uranium (VI) immobilization with calcium and phosphate[J]. Environmental Science & Technology, 2016, 50(6): 3128-3136. [25] Lammers L N, Rasmussen H, Adilman D, et al. Groundwater uranium stabilization by a metastable hydroxyapatite[J]. Applied Geochemistry, 2017, 84: 105-113. [26] Troyer L D, Maillot F, WANG Zheming, et al. Effect of phosphate on U(VI) sorption to montmorillonite: Ternary complexation and precipitation barriers[J]. Geochimica et Cosmochimica Acta, 2016, 175: 86-99. [27] Tessier A,Campbell P G C,et al. Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-851. [28] 缪德仁. 重金属复合污染土壤原位化学稳定化试验研究[D]. 北京: 中国地质大学, 2010. [29] 雷鸣, 曾敏, 胡立琼, 等. 不同含磷物质对重金属污染土壤-水稻系统中重金属迁移的影响[J]. 环境科学学报, 2014, 34(6): 1527-1533. LEI Ming, ZENG Min, HU Liqiong, et al. Effects of different phosphorus-containing substances on heavy metals migration in soil-rice system[J]. Acta Scientiae Circumstantiae, 2014, 34(6): 1527-1533. [30] Seshadri B, Bolan N S, Choppala G, et al. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil[J]. Chemosphere, 2017, 184: 197-206. [31] 张杰, 郭伟, 张博, 等. 空气中直接捕集CO2技术研究进展[J]. 洁净煤技术, 2021, 27(2): 57-68. ZHANG Jie, GUO Wei, ZHANG Bo, et al. Research progress on direct capture of CO2 from air[J]. Clean Coal Technology, 2021, 27(2): 57-68. [32] 陈杨岫, 阚淼, 燕帅, 等. 类空气浓度的二氧化碳的高效电还原[J]. 催化学报, 2022, 43(7): 1703-1709. CHEN Yangxiu, KAN Miao, YAN Shuai, et al. Electroreduction of air-level CO2 with high conversion efficiency[J]. Chinese Journal of Catalysis, 2022, 43(7): 1703-1709. [33] 王东星, 何福金, 朱加业. CO2碳化矿渣-CaO-MgO加固土效能与机理探索[J]. 岩土工程学报, 2019, 41(12): 2197-2206. WANG Dongxing, HE Fujin, ZHU Jiaye. Performance and mechanism of CO2 carbonated slag-CaO-MgO-solidified soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2197-2206. [34] Kaplan D I, Kukkadapu R, Seaman J C, et al. Iron mineralogy and uranium-binding environment in the rhizosphere of a wetland soil[J]. Science of the Total Environment, 2016, 569-570: 53-64. [35] Stetten L, Blanchart P, Mangeret A, et al. Redox fluctuations and organic complexation govern uranium redistribution from U(IV)-phosphate minerals in a mining-polluted wetland soil, Brittany, France[J]. Environmental Science & Technology, 2018, 52(22): 13099-13109. [36] 王东星, 何福金. CO2碳化-矿渣/粉煤灰协同固化土效果与机制研究[J]. 岩石力学与工程学报, 2020, 39(7): 1493-1502. WANG Dongxing, HE Fujin. Investigation on performance and mechanism of CO2 carbonated slag/fly ash solidified soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1493-1502. [37] 苏峰丙, 罗学刚, 唐永金, 等. 不同含磷化合物固化修复铀污染土壤的研究[J]. 核农学报, 2018, 32(2): 407-415. |