辐射防护 ›› 2025, Vol. 45 ›› Issue (4): 327-336.

• 辐射防护监测 • 上一篇    下一篇

基于PCA-FCN混合模型的NaI(Tl)伽马能谱核素识别技术研究

刘鑫1,2, 赵日1,2, 谭俊1, 王茂林1, 黄健1, 张静1,2, 梁润成1,2, 刘兆行1,2, 石忠焱1,2, 王佳1, 令狐仁静1, 刘立业1   

  1. 1.中国辐射防护研究院,太原 030006;
    2.核药研发转化与精准防护山西省重点实验室,太原 030006
  • 收稿日期:2024-10-24 发布日期:2025-07-28
  • 通讯作者: 刘立业。E-mail:liuliye@cirp.org.cn
  • 作者简介:刘鑫(1994—),男,2019年毕业于兰州大学原子核物理专业,获学士学位,2022年毕业于兰州大学粒子物理与原子核物理专业,获硕士学位,助理研究员。E-mail:xonleo@163.com

Research on NaI(Tl) gamma spectrum radionuclide identification technology based on hybrid PCA-FCN model

LIU Xin1,2, ZHAO Ri1,2, TAN Jun1, WANG Maolin1, HUANG Jian1, ZHANG Jing1,2, LIANG Runcheng1,2, LIU Zhaoxing1,2, SHI Zhongyan1,2, WANG Jia1, LINGHU Renjing1, LIU Liye1   

  1. 1. China Institute for Radiation Protection,Taiyuan 030006;
    2. Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006
  • Received:2024-10-24 Published:2025-07-28

摘要: NaI(Tl)探测器能量分辨率较差使得基于其获取的伽马能谱进行准确的核素识别较为困难,为提高识别准确率,综合已有研究方法和模型的优缺点,提出了PCA-FCN混合识别模型,并基于随机化策略通过实验测量和蒙特卡罗模拟构建了有较强通用性的γ能谱数据集,利用数据集对模型进行训练并开展实验测量能谱验证。结果表明,PCA-FCN模型的核素识别APF1性能因子达到0.982 3和0.980 1,显著优于PCA模型、FCN模型和传统全能峰分析法,而且在不同能谱复杂度、不同能谱统计涨落下仍能保持识别准确性。该结论显示了PCA-FCN模型和随机化样本生成策略在未来放射性定量测量应用的潜力。

关键词: NaI(Tl)探测器, 核素识别, 伽马能谱, 主成分分析, 全连接网络

Abstract: The poor energy resolution of NaI(Tl) detector makes it difficult to accurately identify radionuclides based on the acquired gamma spectrum. In order to improve the identification accuracy, this paper proposed a hybrid PCA-FCN identification model based on the advantages and disadvantages of existing research methods and models. Based on the randomization strategy, a robust gamma energy spectrum datasets was constructed through empirical measurements and Monte Carlo simulations. The datasets was utilized to train the model and conduct validation experiments. Results indicate that the PCA-FCN model achieved radionuclide identification performance factors of 0.982 3 for average precision (AP) and 0.980 1 for the F1 score, markedly surpassing the performance of PCA models, FCN models, and traditional full-energy peak analysis methods. The identification accuracy can still be maintained under varying spectral complexities and statistical fluctuations. This conclusion shows the potential of the PCA-FCN model and the random sample generation strategy for future applications in quantitative measurement of radioactivity.

Key words: NaI(Tl) detector, radionuclide identification, gamma spectrum, principal component analysis, fully connected network

中图分类号: 

  • O57