[1] 刘月妙, 徐国庆, 刘淑芬. 高放废物地质处置库缓冲/回填材料性能测定[J]. 辐射防护, 1998,18(4): 52-57. LIU Yuemiao, XU Guoqing, LIU Shufen. A study on buffer/backfill materials for hlw geological repository[J]. Radiation Protection, 1998,18(4): 52-57. [2] ZHANG Chunliang, Kröhn K P. Sealing behaviour of crushed claystone-bentonite mixtures[J]. Geomechanics for Energy and the Environment, 2019, 17: 90-105. [3] 刘月妙, 蔡美峰, 王驹. 高放废物处置库缓冲材料导热性能研究[J]. 岩石力学与工程学报, 2007(S2): 3891-3896. LIU Yuemiao, CAI Meifeng, WANG Ju. Thermal properties of buffer material for high-level radioactive waste disposal[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S2): 3891-3896. [4] 叶为民, Schanz T, 钱丽鑫, 等. 高压实高庙子膨润土GMZ01的膨胀力特征[J]. 岩石力学与工程学报, 2007(S2): 3861-3865. YE Weimin, Schanz T, QIAN Lixin, et al. Characteristics of swelling pressure of densely compacted gaomiaozi bentonite GMZ01[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S2): 3861-3865. [5] 刘月妙, 徐国庆, 刘淑芬, 等. 我国高放废物处置库缓冲/回填材料压实膨胀特性研究[J]. 铀矿地质, 2001, 17(1): 44-47. LIU Yuemiao, XU Guoqing, LIU Shufen, et al. Study on compactibility and swelling property of buffer/backfili material for HLW pepository[J]. Uranium Geology, 2001, 17(1): 44-47. [6] Tanaka Y, Watanabe Y. Modelling the effects of test conditions on the measured swelling pressure of compacted bentonite[J]. Soils and Foundations, 2019, 59(1): 136-150. [7] RUAN Kunlin, WANG Hailong, Komine H, et al. Experimental study for temperature effect on swelling pressures during saturation of bentonites[J]. Soils and Foundations, 2022, 62(6): 101245. [8] Mokni N, Cabrera J, Deleruyelle F. On the installation of an in situ large-scale vertical SEALing (VSEAL) experiment on bentonite pellet-powder mixture[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(9): 2388-2401. [9] Samper J, Mon A, Montenegro L. A revisited thermal, hydrodynamic, chemical and mechanical model of compacted bentonite for the entire duration of the FEBEX in situ test[J]. Applied Clay Science, 2018, 160: 58-70. [10] ZHENG Liange, Samper J, Montenegro L. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis[J]. Journal of Contaminant Hydrology, 2011, 126(1/2): 45-60. [11] DA Tianxing, CHEN Tao, HE Wenke, et al. Applying machine learning methods to estimate the thermal conductivity of bentonite for a high-level radioactive waste repository[J]. Nuclear Engineering and Design, 2022, 392: 111765. [12] HU Guang, Pfingsten W. Data-driven machine learning for disposal of high-level nuclear waste: A review[J]. Annals of Nuclear Energy, 2023, 180: 109452. [13] Bishnoi S, Singh S, Ravinder R, et al. Predicting young’s modulus of oxide glasses with sparse datasets using machine learning[J]. Journal of Non-crystalline Solids, 2019, 524: 119643. [14] Bang H T, Yoon S, Jeon H. Application of machine learning methods to predict a thermal conductivity model for compacted bentonite[J]. Annals of Nuclear Energy, 2020, 142: 107395. [15] FENG Zhengye, GAO Zepeng, WANG Yongjia, et al. Application of machine learning to study the effective diffusion coefficient of Re(Ⅶ) in compacted bentonite[J]. Applied Clay Science, 2023, 243: 107076. [16] Ebiwonjumi B, Cherezov A, Dzianisau S, et al. Machine learning of LWR spent nuclear fuel assembly decay heat measurements[J]. Nuclear Engineering and Technology, 2021, 53(11): 3563-3579. [17] 崔素丽, 张虎元, 刘吉胜, 等. 混合型缓冲回填材料膨胀变形试验研究[J]. 岩土力学, 2011, 32(3): 684-691+696. CUI Suli, ZHANG Huyuan, LIU Jisheng, et al. Experimental study of swelling deformation for compacted bentonite-sand mixture as buffer material[J]. Rock and Soil Mechanics, 2011, 32(3): 684-691+696. [18] 孙德安, 张龙. 盐溶液饱和高庙子膨润土膨胀特性及预测[J]. 岩土力学, 2013(10): 2790-2795. SUN Dean, ZHANG Long. Swelling characteristics of Gaomiaozi bentonite saturated by salt solution and their prediction[J]. Rock and Soil Mechanics, 2013(10): 2790-2795. [19] 陈永贵, 刘聪, 马婧, 等. 盐碱演化环境下高压实GMZ膨润土膨胀变形特性[J]. 岩土工程学报, 2023, 45(4): 690-698. CHEN Yonggui, LIU Cong, MA Jing, et al. Swelling characteristics of compacted GMZ bentonite with saline-alkali evolution solutions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 690-698. [20] Miettinen H, Bomberg M, Bes R, et al. Transformation of inherent microorganisms in Wyoming-type bentonite and their effects on structural iron[J]. Applied Clay Science, 2022, 221: 106465. [21] Navarro V, Asensio L, Gharbieh H, et al. A triple porosity hydro-mechanical model for MX-80 bentonite pellet mixtures[J]. Engineering Geology, 2020, 265: 105311. [22] 鲁文玥, 刘月妙, 谢敬礼, 等. 高庙子钠基膨润土的膨胀性能研究[J]. 中国矿业, 2020, 29(3): 177-182. LU Wenyue, LIU Yuemiao, XIE Jingli, et al. Swelling of different Gaomiaozi sodium-based bentonites[J]. China Mining Magazine, 2020, 29(3): 177-182. [23] CHEN Yonggui, LIU Lina, YE Weimin, et al. Deterioration of swelling pressure of compacted Gaomiaozi bentonite induced by heat combined with hyperalkaline conditions[J]. Soils and Foundations, 2019, 59(6): 2254-2264. [24] XU Hongzhang, HE Hongjie, ZHANG Ying, et al. A comparative study of loss functions for road segmentation in remotely sensed road datasets[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 116: 103159. [25] Topuz B, Çakici Alp N. Machine learning in architecture[J]. Automation in Construction, 2023, 154: 105012. [26] 刘晓燕, 刘路路, 蔡国军, 等. 温度和盐/碱作用下膨润土-砂-石墨缓冲材料膨胀力性能演化[J]. 岩土工程学报, 2023, 45(12): 2463-2471. LIU Xiaoyan, LIU Lulu, CAI Guojun, et al. Evolution of swelling pressure properties of bentonite-sand-graphite buffer materials under action of temperature and salt/alkali[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2463-2471. [27] ZHANG Qichao, ZHENG Min, HUANG Yanliang, et al. Long term corrosion estimation of carbon steel, titanium and its alloy in backfill material of compacted bentonite for nuclear waste repository[J]. Scientific Reports, 2019, 9(1): 3195. [28] 张虎元, 张明, 崔素丽, 等. 混合型缓冲回填材料土水特征曲线测试与修正[J]. 岩石力学与工程学报, 2011, 30(2): 382-390. ZHANG Huyuan, ZHANG Ming, CUI Suli, et al. Determination and modification of soil-water characteristic curves of bentonite-sand mixtures as high-level waste backfill/buffer material[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 382-390. [29] 陈永贵, 蒯琪, 叶为民, 等. 高压实膨润土膨胀力预测研究[J]. 同济大学学报(自然科学版), 2018, 46(12): 1628-1636. CHEN Yonggui, KUAI Qi, YE Weimin, et al. Prediction of swelling pressure for compacted bentonite[J]. Journal of Tongji University(Natural Science), 2018, 46(12): 1628-1636. [30] 王建威. 高放废物处置库缓冲/回填材料膨胀性能研究[D]. 绵阳: 西南科技大学, 2015. [31] 项国圣, 方圆, 徐永福. 阳离子交换对高庙子钠基膨润土膨胀性能的影响[J]. 浙江大学学报版(工学版), 2017, 51(5): 931-936. XIANG Guosheng, FANG Yuan, XU Yongfu. Swelling characteristics of GMZ01 bentonite affected by cation exchange reaction[J]. Journal of Zhejiang University(Engineering Science), 2017, 51(5): 931-936. [32] 张虎元, 梁健, 刘吉胜, 等. 混合型缓冲回填材料压实性能研究[J]. 岩石力学与工程学报, 2009, 28(12): 2585-2592. ZHANG Huyuan, LIANG Jian, LIU Jisheng, et al. Compaction properties of bentonite-sand mixture as buffer material for hlw disposal[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2585-2592. |