辐射防护 ›› 2025, Vol. 45 ›› Issue (2): 157-166.

• 放射性废物管理 • 上一篇    下一篇

基于机器学习算法的高放废物处置库屏障材料膨胀性能演化研究

张明1,2, 胡栋科1, 谢敬礼3, 王赵明4, 李小明4, 周方亮1, 赵留义1   

  1. 1.郑州航空工业管理学院,郑州 450046;
    2.西北大学,西安 710127;
    3.核工业北京地质研究院,北京 100029;
    4.中国辐射防护研究院,太原 030006
  • 收稿日期:2024-03-18 出版日期:2025-03-20 发布日期:2025-03-18
  • 作者简介:张明(1986—),男,2013年毕业于兰州大学土木工程与力学学院地质工程专业(直博),副教授。E-mail:zhangming@zua.edu.cn
  • 基金资助:
    中国博士后科学基金第72批面上项目(2022M721046),2022年度河南省科技攻关项目(222102320137),河南省住房城乡建设科技计划项目(HNJS-K-2330)。

Research on evolution of swelling performance of buffer barrier in high-level radioactive waste repository based on machine learning algorithms

ZHANG Ming1,2, HU Dongke1, XIE Jingli3, WANG Zhaoming4, LI Xiaoming4, ZHOU Fangliang1, ZHAO Liuyi1   

  1. 1. Zhengzhou University of Aeronautics, Zhengzhou 450046;
    2. Northwest University, Xi'an 710127;
    3. Beijing Research Institute of Uranium Geology, Beijing 100029;
    4. China Institute for Radiation Protection, Taiyuan 030006
  • Received:2024-03-18 Online:2025-03-20 Published:2025-03-18

摘要: 高放废物处置库服役周期长且地质条件复杂,常规手段无法直接获取膨润土缓冲屏障膨胀性能演化趋势,本文尝试采用机器学习算法展开预测。利用在材料性能预测方面比较成熟的9种算法训练模型,探讨机器学习算法预测膨润土膨胀性能的可行性,通过分析其决定系数和均方根误差,遴选出神经网络算法为最优.引入我国北山候选处置库地球化学条件,预测出高庙子膨润土在高放废物处置库服役期间膨胀力呈“S”型演化;考虑蒙脱石含量、初始含水率、温度以及Na+浓度影响,缓冲屏障初始干密度建议值不小于1.58 g/cm3;若进一步考虑铁质储存罐Fe(Ⅱ)释放的影响,缓冲屏障初始干密度应进一步增大。本研究可为我国北山高放废物处置库地下试验室原位试验开展和缓冲屏障性能评价提供理论依据。

关键词: 膨润土, 高放废物处置库, 缓冲屏障, 膨胀性能, 机器学习

Abstract: High-level radioactive waste repository has a long service period and complex geological conditions. It is difficult for general tests to obtain the evolution trend of the swelling performance of bentonite buffer barrier under the working conditions of the repository. This paper attempts to use machine learning algorithms to research it. The model is trained by ten machine learning algorithms which is more mature in material performance prediction, the coefficient of determination and root mean square error of the above algorithms are compared and analyzed. The feasibility of machine learning algorithms in predicting the swelling performance of bentonite is discussed, and the neural network algorithm is selected as the best one. The geochemical condition of Beishan candidate repository in China is introduced. It is predicted that the swelling pressure evolution trend of Gaomiaozi bentonite during the service of high-level radioactive repository is ‘S’ type. The results show that considering the influence of dry density, montmorillonite content, initial moisture content and temperature, the recommended value of initial dry density of buffer barrier is not less than 1.58 g/cm3. If the effect of Fe(II) release from the iron container is further considered, the initial dry density of the buffer barrier should be further increased. This study can provide a theoretical basis for the in-situ experiment and buffer barrier performance evaluation of the underground laboratory of Beishan high-level waste radioactive repository in China.

Key words: bentonite, high-level radioactive waste repository, buffer barrier, swelling performance, machine learning

中图分类号: 

  • TU42