[1] 陈楠. 微生物在重金属污染土壤修复中的作用研究[J]. 环境科学与管理,2016,41(2):86-90. [2] 郑家传,张建荣,刘希雯,等. 污染场地六价铬的还原和微生物稳定化研究[J]. 环境科学,2014,35(10):3882-3887. [3] Majumder L W, Wall J D. Uranium bio-transformations: chemical or biological processes?[J]. Open Journal of Inorganic Chemistry, 2017, 7(2):28-60. [4] Woolfolk C A.Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. II. Stoichiometry with inorganic sulfur compounds[J]. Journal of Bacteriology, 1962, 84(4):659-668. [5] Lovley D R, Phillips E J P. Reduction of uranium by Desulfovibrio desulfuricans[J]. Applied and Environmental Microbiology, 1992, 58(3):850-856. [6] Lovley D R, Phillips E J P. Bioremediation of uranium contamination with enzymatic uranium reduction[J]. Environmental Science & Technology, 1992, 26(11):2228-2234. [7] Francis A J, Dodge C J, Lu F, et al. XPS and XANES studies of uranium reduction by Clostridium sp.[J]. Environmental Science & Technology, 1994, 28(4):636-639. [8] Cho K, Zholi A, Frabutt D, et al. Linking bacterial diversity and geochemistry of uranium-contaminated groundwater[J]. Environmental Technology, 2012, 33(14):1629-1640. [9] Newsome L, Morris K, Lloyd J R. The biogeochemistry and bioremediation of uranium and other priority radionuclides[J]. Chemical Geology, 2014, 363:164-184. [10] Smeaton C M, Weisener C G, Burns P C, et al. Bacterially enhanced dissolution of meta-autunite[J]. American Mineralogist, 2008, 93(11-12):1858-1864. [11] Kazy S K, D′Souza S F, Sar P. Uranium and thorium sequestration by a Pseudomonas sp.: Mechanism and chemical characterization[J]. Journal of Hazardous Materials, 2009, 163(1):65-72. [12] Suzuki Y, Banfield J F. Resistance to, and accumulation of uranium by bacteria from a uranium-contaminated site[J].Geomicrobiology,2004, 21(2):113-121. [13] 陈军利,孙娟. 铀尾渣渗水的微生物源头控制技术[J]. 湿法冶金,2021,40(1):30-34. [14] Altundag H, Dundar M S, Keskin C S, et al. Trace metal levels in vehicle air and pollen filter dusts by the BCR extraction procedure[J]. Ecological Chemistry and Engineering,2013, 20(2):257-264. [15] 温丹妮.氧化还原电位的研究进展及相关应用[J]. 轻工科技,2017(7):101-103. [16] 王建龙,陈灿. 微生物还原放射性核素研究进展[J]. 核技术,2006,29(4):286-289. [17] Senko J M, Zhang G, Mcdonough J T, et al. Metal reduction at low pH by a Desulfosporosinus species: Implications for the biological treatment of acidic mine drainage[J]. Geomicrobiology Journal, 2009, 26(2):71-82. [18] 刘岳林,谢水波. 影响硫酸盐还原菌还原U(Ⅵ)的因素探讨[J]. 铀矿冶,2010,29(4):192-195. [19] 吴唯民,Jack Carley,David Watson,等. 地下水铀污染的原位微生物还原与固定:在美国能源部田纳西橡树岭放射物污染现场的试验[J]. 环境科学学报,2011,31(3):449-459. [20] LIU Y, QI T, CHU J, et al. Decomposition of ilmenite by concentrated KOH solution under atmospheric pressure[J]. International Journal of Mineral Processing, 2006, 81(2):79-84. [21] Nayl A A, Aly H F. Acid leaching of ilmenite decomposed by KOH[J]. Hydrometallurgy, 2009, 97(1-2):86-93. [22] Hayward A.C. Characteristics of Pseudomonas solanacearum[J]. Journal of Applied Microbiology, 1964, 27(2):265-277. [23] Joshi M M, Lee S. Biological remediation of polynuclear aromatic hydrocarbon contaminated soils using Acinetobacter sp.[J]. Energy Sources, 1996, 18(2):167-176. |