辐射防护 ›› 2023, Vol. 43 ›› Issue (2): 97-113.
梁铠淇1, 洪昌寿1,2,3, 陈志斌4, 赵天吉1, 汪弘1,2,3, 李向阳1,2,3, 刘永1,2,3
收稿日期:
2022-03-25
出版日期:
2023-03-20
发布日期:
2023-05-11
通讯作者:
洪昌寿。E-mail:hongchangshou@163.com
作者简介:
梁铠淇(1999—),女,2022年毕业于南华大学。E-mail: kaiqileung@163.com
基金资助:
LIANG Kaiqi1, HONG Changshou1,2,3, CHEN Zhibin4, ZHAO Tianji1, WANG Hong1,2,3, LI Xiangyang1,2,3, LIU Yong1,2,3
Received:
2022-03-25
Online:
2023-03-20
Published:
2023-05-11
摘要: 氡来源于土壤、铀尾矿、岩石等多孔射气介质,铀尾矿库滩面是尾矿堆积或沉积体与大气环境直接接触的暴露面,氡气从该交界面析出并经大气弥散而污染周边环境,覆盖处置是滩面控氡的主要手段。本文以典型铀尾矿库滩面为例,综述氡析出机理及其影响因素,阐述了多孔射气介质固有特性及外部气象环境条件对铀尾矿库滩面氡析出的影响机制。结果表明,国内外学者已对多孔射气介质固有特性影响氡析出的规律开展了大量研究,但由于实验尺度、研究方法存在差异,矿物颗粒特征影响氡析出机制的解释仍存在争议,外部气象环境等因素对铀尾矿库滩面氡析出的影响机制尚不明确。为此,提出今后研究的关注点:(1)真实条件下,氡析出过程的合理表征形式;(2)开展大尺度实验探究多孔介质固有特性对铀尾矿库滩面氡析出的影响机制。
中图分类号:
梁铠淇, 洪昌寿, 陈志斌, 赵天吉, 汪弘, 李向阳, 刘永. 铀尾矿库氡析出机理及其影响因素研究进展[J]. 辐射防护, 2023, 43(2): 97-113.
LIANG Kaiqi, HONG Changshou, CHEN Zhibin, ZHAO Tianji, WANG Hong, LI Xiangyang, LIU Yong. Mechanisms and factors affecting radon exhalation from surface of uranium mill tailing pond with compacted soil cover: An overview[J]. RADIATION PROTECTION, 2023, 43(2): 97-113.
[1] 秦宗会, 谢兵. 氡的特性、来源及国家控制标准[J]. 中国西部科技, 2011, 10(20): 4-5+18. QIN Z, XIE B. The characteristic, source and government standard of radon[J]. Science and Technology of West China, 2011, 10(20): 4-5+18. [2] Waggitt P. A review of worldwide practices for disposal of uranium mill tailings[M]. Australia: Australian Government Publishing Service, 1994. [3] Silker W B, Kalkwarf D R. Radon diffusion in candidate soils for covering uranium mill tailings:NUREG/CR-2924[R]. United States: N. P.,1983. [4] Waugh W, Smith G, Bergman-Tabbert D, et al. Evolution of cover systems for the uranium mill tailings remedial action project, USA[J]. Mine Water and the Environment, 2001, 20: 190-197. [5] 潘英杰. 浅谈国外铀尾矿库的退役治理[J]. 铀矿冶, 1998, 17(2): 102-110. PAN Y J. Decommissioning management of foreign uranium mill tailings ponds[J]. Uranium Mining and Metallurgy,1998,17(2):102-110. [6] IAEA.Current practices for the management and confinement of uranium mill tailings[M]. Vienna:International Atomic Energy Agency,1992. [7] Hassan N M, Hosoda M, Ishikawa T, et al. Radon migration process and its influence factors; Review[J]. Japanese Journal of Health Physics, 2009, 44(2): 218-231. [8] Graaf E, Witteman G A A, Van der Spoel W, et al.Measurements on, and modelling of diffusive and advective radon transport in soil[J]. Radiation Protection Dosimetry, 1994, 56: 167-170. [9] Van Der Spoel W H, Van Der Graaf E R, De Meijer R J. Combined diffusive and advective transport of radon in a homogeneous column of dry sand[J]. Health Physics, 1998, 74(1): 48-63. [10] Schery S D, Gaeddert D H, Wilkening M H. Factors affecting exhalation of radon from a gravelly sandy loam[J]. Journal of Geophysical Research, 1984, 89(D5): 7299-7309. [11] Kristiansson K, Malmqvist L. Evidence for nondiffusive transport of 222Rn in the ground and a new physical model for the transport[J]. Geophysics, 1982, 47(10): 1444-1452. [12] Folger P F, Poeter E, Wantye R B, et al. 222Rn transport in a fractured crystalline rock aquifer: results from numerical simulations[J]. Journal of Hydrology, 1997, 195(1-4): 45-77. [13] Trique M, Richon P, Perrier F, et al. Radon emanation and electric potential variations associated with transient deformation near reservoir lakes[J]. Nature, 1999, 399(6732): 137-141. [14] Zafrir H, Barbosa S M, Malik U. Differentiation between the effect of temperature and pressure on radon within the subsurface geological media[J]. Radiation Measurements, 2013, 49: 39-56. [15] 张炜. 覆岩采动裂隙及其含水性的氡气地表探测机理研究[D]. 徐州: 中国矿业大学, 2012. ZHANG W. Mechanism research on detecting mining-induced fractures and its aquosity in overlying strata by radon on surface[D]. Xuzhou:China University of Mining and Technology,2012. [16] 李咏梅. 铀尾矿氡析出的动力学机理研究[D]. 衡阳: 南华大学, 2018. LI Y. Research on the dynamics mechanism of radon exhalation from uranium tailings[D]. Hengyang:University of South China, 2018. [17] 张哲, 朱民安, 张永祥. 地下工程与人居环境氡防护技术[M]. 北京: 原子能出版社, 2010. ZHANG Z, ZHU M, ZHANG Y. Radon protection technology in underground engineering and human settlement environment[M]. Beijing:Atomic Energy Press, 2010. [18] Ferry C, Richon P, Beneito A, et al. Radon exhalation from uranium mill tailings: experimental validation of a 1-D model[J]. Journal of Environmental Radioactivity, 2001, 54(1): 99-108. [19] Panigrahi D C, Mishra D P, Sahu P. Evaluation of inhalation exposure contributed by backfill mill tailings in underground uranium mine[J]. Environmental Earth Sciences, 2015, 74(5): 4327-4334. [20] Rogers V C, Nielson K K. Multiphase radon generation and transport in porous materials[J]. Health Physics, 1991, 60(6): 807-815. [21] Tanner A B. Radon migration in the ground: a supplementary review:CONF-780422--(VOL.1)[R]. United States: Department of Energy, Oak Ridge, TN (USA), 1980: 5-56. [22] Internationale Atomenergie-Organisation. Measurement and calculation of radon releases from NORM residues[R]. Vienna: Internat. Atomic Energy Agency, 2013. [23] 谭凯旋, 刘泽华, 王国全. 铀尾矿氡析出的分形动力学与环境治理[M]. 北京: 科学出版社, 2016. TAN K, LIU Z, WANG G. Fractal dynamics of radon exhalation from uranium tailings and environmental remediation[M]. Beijing:Science Press, 2016. [24] Schumann R R. The radon emanation coefficient:an important tool for geologic radon potential estimations[A]. 1993: 40-47. [25] Nazaroff W W. Radon transport from soil to air[J]. Reviews of Geophysics, 1992, 30(2): 137-160. [26] Arnold B W. Radon transport//Ho C K, Webb S W. Gas transport in porous media[M]. Dordrecht: Springer Netherlands, 2006: 333-338. [27] Sasaki T, Gunji Y, Okuda T. Mathematical modeling of radon emanation[J]. Journal of Nuclear Science and Technology, 2004, 41(2): 142-151. [28] Kathren R L. Radioactivity in the environment: Sources, distribution and surveillance[M]. United States: Harvard Academic Publishers, 1984. [29] Flügge S, Zimens Κ E. Die Bestimmung von Korngrößen und von Diffusionskonstanten aus dem Emaniervermögen: (Die Theorie der Emaniermethode.)[J]. Zeitschrift für Physikalische Chemie, Oldenbourg Wissenschaftsverlag, 1939, 42B(1): 179-220. [30] Nazaroff W W, Nero A V. Radon and its decay products in indoor air[M]. New York: John Wiley and Sons Inc, 1988. [31] Griffiths A D, Zahorowski W, Element A, et al. A map of radon flux at the Australian land surface[J]. Atmospheric Chemistry and Physics, 2010, 10(18): 8969-8982. [32] Rogers V C, Nielson K K. Correlations for predicting air permeabilities and 222Rn diffusion coefficients of soils[J]. Health Physics, 1991, 61(2): 225-230. [33] Muñoz E, Frutos B, Olaya M, et al. A finite element model development for simulation of the impact of slab thickness, joints, and membranes on indoor radon concentration[J]. Journal of Environmental Radioactivity, 2017, 177: 280-289. [34] Chauhan R P, Chakarvarti S K. Radon diffusion through soil and fly ash: Effect of compaction[J]. Radiation Measurements, 2002, 35(2): 143-146. [35] 刘洪涛. 土壤氡迁移数值模拟及土壤氡对流速度的研究[D]. 北京: 中国地质大学(北京), 2018. LIU H. Study on the numerical simulation of soil radon migration and soil radon convective velocity[D]. Beijing:China University of Geosciences,2018. [36] 白云生, 林玉飞, 常桂兰, 等. 铀矿找矿中氡的迁移机制和测量的影响因素[J]. 中国核科技报告, 1996: 86-94. BAI Y, LIN Y, CHANG G, et al. Migration mechanism of radon and influencing factors of radon measurement in uranium prospecting[J]. China Nuclear Science and Technology Report, 1996:86-94. [37] King C Y, Minissale A. Seasonal variability of soil-gas radon concentration in central California[J]. Radiation Measurements, 1994, 23(4): 683-692. [38] Mishra D P, Sahu P, Panigrahi D C, et al. Assessment of 222Rn emanation from ore body and backfill tailings in low-grade underground uranium mine[J]. Environmental Science and Pollution Research, 2014, 21(3): 2305-2312. [39] Panigrahi D C, Sahu P, Mishra D P, et al. Assessment of inhalation exposure potential of broken uranium ore piles in low-grade uranium mine[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302(1): 433-439. [40] Sahu P, Mishra D P, Panigrahi D C, et al. Radon emanation from low-grade uranium ore[J]. Journal of Environmental Radioactivity, 2013, 126: 104-114. [41] Jagadeesha B G, Narayana Y. Radium and radon exhalation rate in soil samples of Hassan district of South Karnataka,India[J]. Radiation Protection Dosimetry, 2016, 171(2): 238-242. [42] Lawrence C E, Akber R A, Bollhöfer A, et al. Radon-222 exhalation from open ground on and around a uranium mine in the wet-dry tropics[J]. Journal of Environmental Radioactivity, 2009, 100(1): 1-8. [43] Sahu P, Mishra D P, Panigrahi D C, et al. Radon emanation from backfilled mill tailings in underground uranium mine[J]. Journal of Environmental Radioactivity, 2014, 130: 15-21. [44] Sahoo B K, Mayya Y S, Sapra B K, et al. Radon exhalation studies in an Indian uranium tailings pile[J]. Radiation Measurements, 2010, 45(2): 237-241. [45] Cothern C R, Smith J E. Environmental radon[M]. Boston,MA: Springer US, 1987. [46] Levinson A A, Bland C J, Dean J R. Uranium series disequilibrium in young surficial uranium deposits in southern British Columbia[J]. Canadian Journal of Earth Sciences, 1984, 21(5): 559-566. [47] Morawska L, Phillips C R. Dependence of the radon emanation coefficient on radium distribution and internal structure of the material[J]. Geochimica et Cosmochimica Acta, 1993, 57(8): 1783-1797. [48] Landa E R. Radium-226 contents and Rn emanation coefficients of particle-size fractions of alkaline, acid and mixed U mill tailings[J]. Health Physics, 1987, 52(3): 303-310. [49] Sakoda A, Hanamoto K, Ishimori Y, et al. First model of the effect of grain size on radon emanation[J]. Applied Radiation and Isotopes, 2010, 68(6): 1169-1172. [50] Sasaki T, Gunji Y, Okuda T.Mathematical modeling of radon emanation[J]. Journal of Nuclear Science and Technology, 2004, 41(2): 142-151. [51] Markkanen M, Arvela H. Radon emanation from soils[J]. Radiation Protection Dosimetry, 1992, 45(1-4): 269-272. [52] De Martino S, Sabbarese C, Monetti G. Radon emanation and exhalation rates from soils measured with an electrostatic collector[J]. Applied Radiation and Isotopes, 1998, 49(4): 407-413. [53] Hassan N M, Hosoda M, Ishikawa T, et al. Radon migration process and its influence factors:Review[J]. Japanese Journal of Health Physics, 2009, 44(2): 218-231. [54] Phong Thu H N, Van Thang N, Hao L C. The effects of some soil characteristics on radon emanation and diffusion[J]. Journal of Environmental Radioactivity, 2020, 216: 106189. [55] Nielson K K, Rogers V C, Gee G W. Diffusion of radon through soils: A pore distribution model[J]. Soil Science Society of America Journal, 1984, 48(3): 482-487. [56] Shweikani R, Giaddui T G, Durrani S A.The effect of soil parameters on the radon concentration values in the environment[J]. Radiation Measurements, 1995, 25(1-4): 581-584. [57] McPherson M J. Subsurface ventilation and environmental engineering[M]. Dordrecht: Springer Netherlands, 1993. [58] 万建华, 于长春, 熊盛青, 等. 氡气法反演燃烧煤层深度新方法[J]. 物探与化探, 2007,31(6): 556-559. WAN J, YU C, XIONG S, et al. A novel method for inversion of coal seam depth[J]. Geophysical & Geochemical Exploration, 2007,31(6): 556-559. [59] Iskandar D, Yamazawa H, Iida T. Quantification of the dependency of radon emanation power on soil temperature[J]. Applied Radiation and Isotopes, 2004, 60(6): 971-973. [60] Stranden E, Kolstad A, Lind B. The influence of moisture and temperature on radon exhalation[J]. Radiation Protection Dosimetry, 1984, 7(1-4): 55-58. [61] 张忠相, 李向阳, 邓文辉, 等. 温度对多孔射气介质氡析出影响试验研究[J]. 工业安全与环保, 2016, 42(6): 30-32. ZHANG Z, LI X, DENG W, et al. The experimental research on the impact of temperature on porous medium emanation radon exhalation[J]. Industrial Safety and Environmental Protection, 2016, 42(6): 30-32. [62] IAEA.Radon in uranium mining: Proceedings of a panel on radon in uranium mining[M]. Panel on Radon in Uranium Mining, Washington, D. C.,1975. [63] Gurau D, Stanga D, Dragusin M, et al. Review of the principal mechanism of radon in the environment[J]. Romanian Journal of Physics, 2014, 59(9-10): 904-911. [64] Strong K P, Levins D M. Effect of moisture content on radon emanation from uranium ore and tailings[J]. Health Physics, 1982, 42(1): 27-32. [65] Sahu P, Panigrahi D C, Mishra D P. A comprehensive review on sources of radon and factors affecting radon concentration in underground uranium mines[J]. Environmental Earth Sciences, 2016, 75(7): 617. [66] Hosoda M, Shimo M, Sugino M, et al. Effect of soil moisture content on radon and thoron exhalation[J]. Journal of Nuclear Science and Technology, 2007, 44(4): 664-672. [67] Menetrez M Y, Mosley R B, Snoddy R, et al. Evaluation of radon emanation from soil with varying moisture content in a soil chamber[J]. Environment International, 1996, 22(S1): 447-453. [68] Kovach E M.Meteorological influences upon the radon-content of soil-gas[J]. Transactions, American Geophysical Union, 1945, 26(2): 241. [69] Ball T K, Nicholson R A, Peachey D. Effects of meteorological variables on certain soil gases used to detect buried ore deposits[J]. Institution of Mining and Metallurgy Transactions, 1983, 92: 183-190. [70] Lindmark A, Rosen B. Radon in soil gas—Exhalation tests and in situ measurements[J]. Science of The Total Environment, 1985, 45: 397-404. [71] Schumann R R, Owen D E, Asher-Bolinder S. Weather factors affecting soil-gas radon concentrations at a single site in the semiarid western U.S.[R]. Department of the Interior, U.S. Geological Survey, 1988: 13. [72] Segovia N, Seidel J L, Monnin M. Variations of radon in soils induced by external factors[J]. Journal of Radioanalytical and Nuclear Chemistry Letters, 1987, 119(3): 199-209. [73] Klusman R W, Jaacks J A. Environmental influences upon mercury, radon and helium concentrations in soil gases at a site near Denver, Colorado[J]. Journal of Geochemical Exploration, 1987, 27(3): 259-280. [74] Monnin M M, Seidel J L. Radon and geophysics: Recent advances[J]. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 1991, 19(1-4): 375-382. [75] Gaso M I, Cervantes M L, Segovia N, et al. Atmospheric radon concentration levels[J]. Radiation Measurements, 1994, 23(1): 225-230. [76] Sundal A V, Valen V, Soldal O, et al. The influence of meteorological parameters on soil radon levels in permeable glacial sediments[J]. Science of The Total Environment, 2008, 389(2-3): 418-428. [77] Crockett R, Groves-Kirkby C, Denman A, et al. Significant annual and sub-annual cycles in indoor radon concentrations: seasonal variation and correction[J]. Geological Society, London, Special Publications, 2018, 451(1): 35-47. [78] Gavriliev S, Petrova T, Miklyaev P, et al. Variations in soil radon levels during winter and spring periods[J]. Radiation Protection Dosimetry, 2020, 191(2): 250-254. [79] Schery S D, Gaeddert D H. Measurements of the effect of cyclic atmospheric pressure variation on the flux of 222 Rn from the soil[J]. Geophysical Research Letters, 1982, 9(8): 835-838. [80] 苏日娜. 大气压力变化对于土壤氡析出率的影响[D]. 北京: 中国地质大学, 2008. SU R N. Atmospheric pressure fluctuation effects on soil radon exhalation[D]. Beijing:China University of Geosciences, 2018. [81] 程冠, 程建平, 郭秋菊. 土壤氡析出率影响因素及估算模型[J]. 中华放射医学与防护杂志, 2006, 26(05): 520-524. CHENG G, CHENG J, GUO Q. Influencing factors and mathematical model of soil radon exhalation rates[J]. Chinese Journal of Radiological Medicine and Protection, 2006, 26(5): 520-524. [82] Firstov P P, Ponomarev E A, Cherneva N V, et al. On the effects of air pressure variations on radon exhalation into the atmosphere[J]. Journal of Volcanology and Seismology, 2007, 1(6): 397-404. [83] Fujiyoshi R, Sakamoto K, Imanishi T, et al. Meteorological parameters contributing to variability in 222Rn activity concentrations in soil gas at a site in Sapporo, Japan[J]. Science of The Total Environment, 2006, 370(1): 224-234. [84] Asher-Bolinder S, Owen D E, Schumann R R. Pedologic and climatic controls on Rn-222 concentrations in soil gas, Denver, Colorado[J]. Geophysical Research Letters, 1990, 17(6): 825-828. [85] Chan S W, Lee C W, Tsui K C. Atmospheric radon in Hong Kong[J]. Journal of Environmental Radioactivity, 2010, 101(6): 494-503. [86] Kovach E M. Diurnal variations of the radon-content of soil-gas[J]. Journal of Geophysical Research, 1946, 51(1): 45. [87] Gates A E, Gundersen L C S. Geologic controls on radon[M]. Geological Society of America, 1992. [88] Megumi K, Mamuro T. Radon and thoron exhalation from the ground[J]. Journal of Geophysical Research, 1973, 78(11): 1804-1808. [89] Bowles C G, Reimer G M. Short-term fluctuations in barometric pressure, soil-gas radon, and gamma radiation:Open-File Report, 91-641[R]. U.S. Geological Survey, 1991. [90] Gavriliev S, Petrova T, Miklyaev P, et al. Variations in soil radon levels during winter and spring periods[J]. Radiation Protection Dosimetry, 2020, 191(2): 250-254. [91] Sasaki T, Gunji Y, Okuda T. Theoretical study of high radon emanation[J]. Journal of Nuclear Science and Technology, 2005, 42(2): 242-249. |
[1] | 汪弘, 何润程, 刘永, 洪昌寿, 李向阳, 罗梦柯, 王建敏. 预制裂隙下铀尾矿库土质覆盖层氡析出实验研究[J]. 辐射防护, 2022, 42(6): 603-610. |
[2] | 王攀, 曾志伟, 孙雪云, 唐林军, 胡鹏华, 张辉. 驻极体法在铀尾矿库氡析出率调查中的应用研究[J]. 辐射防护, 2022, 42(4): 295-300. |
[3] | 龙淑琴, 谢焱石, 谭凯旋, 张明华, 单健, 王升. 花岗岩氡析出影响因素研究进展[J]. 辐射防护, 2022, 42(1): 11-17. |
[4] | 周梓丹, 肖德涛, 肖拥军, 孙昌昊, 宋时雨, 王郦彬, 李伟伟. 车江铜矿室外氡水平研究[J]. 辐射防护, 2019, 39(3): 202-206. |
[5] | 陈刚, 胡鹏华, 李先杰, 任建军, 康剑翘. 基于换气量和氡析出率计算的排氡风量在某水电地下工程通风设计中的比较研究[J]. 辐射防护, 2019, 39(1): 27-32. |
[6] | 张辉, 徐乐昌, 李先杰. 铀矿山废石堆与尾矿库覆盖抑氡实验效果对比研究[J]. 辐射防护, 2017, 37(5): 387-392. |
[7] | 邓慧娟, 肖德涛, 丘寿康, 何正忠, 居治豪, 肖峰. 膨润土/石灰粉改良土壤的降氡效果[J]. 辐射防护, 2017, 37(4): 280-286. |
[8] | 叶勇军, 代鑫涛, 丁德馨, 江俊廷, 李志. 含氡放射性水体氡析出规律的理论研究[J]. 辐射防护, 2017, 37(1): 56-61. |
|