[1] 秦宗会, 谢兵. 氡的特性、来源及国家控制标准[J]. 中国西部科技, 2011, 10(20): 4-5+18. QIN Z, XIE B. The characteristic, source and government standard of radon[J]. Science and Technology of West China, 2011, 10(20): 4-5+18. [2] Waggitt P. A review of worldwide practices for disposal of uranium mill tailings[M]. Australia: Australian Government Publishing Service, 1994. [3] Silker W B, Kalkwarf D R. Radon diffusion in candidate soils for covering uranium mill tailings:NUREG/CR-2924[R]. United States: N. P.,1983. [4] Waugh W, Smith G, Bergman-Tabbert D, et al. Evolution of cover systems for the uranium mill tailings remedial action project, USA[J]. Mine Water and the Environment, 2001, 20: 190-197. [5] 潘英杰. 浅谈国外铀尾矿库的退役治理[J]. 铀矿冶, 1998, 17(2): 102-110. PAN Y J. Decommissioning management of foreign uranium mill tailings ponds[J]. Uranium Mining and Metallurgy,1998,17(2):102-110. [6] IAEA.Current practices for the management and confinement of uranium mill tailings[M]. Vienna:International Atomic Energy Agency,1992. [7] Hassan N M, Hosoda M, Ishikawa T, et al. Radon migration process and its influence factors; Review[J]. Japanese Journal of Health Physics, 2009, 44(2): 218-231. [8] Graaf E, Witteman G A A, Van der Spoel W, et al.Measurements on, and modelling of diffusive and advective radon transport in soil[J]. Radiation Protection Dosimetry, 1994, 56: 167-170. [9] Van Der Spoel W H, Van Der Graaf E R, De Meijer R J. Combined diffusive and advective transport of radon in a homogeneous column of dry sand[J]. Health Physics, 1998, 74(1): 48-63. [10] Schery S D, Gaeddert D H, Wilkening M H. Factors affecting exhalation of radon from a gravelly sandy loam[J]. Journal of Geophysical Research, 1984, 89(D5): 7299-7309. [11] Kristiansson K, Malmqvist L. Evidence for nondiffusive transport of 222Rn in the ground and a new physical model for the transport[J]. Geophysics, 1982, 47(10): 1444-1452. [12] Folger P F, Poeter E, Wantye R B, et al. 222Rn transport in a fractured crystalline rock aquifer: results from numerical simulations[J]. Journal of Hydrology, 1997, 195(1-4): 45-77. [13] Trique M, Richon P, Perrier F, et al. Radon emanation and electric potential variations associated with transient deformation near reservoir lakes[J]. Nature, 1999, 399(6732): 137-141. [14] Zafrir H, Barbosa S M, Malik U. Differentiation between the effect of temperature and pressure on radon within the subsurface geological media[J]. Radiation Measurements, 2013, 49: 39-56. [15] 张炜. 覆岩采动裂隙及其含水性的氡气地表探测机理研究[D]. 徐州: 中国矿业大学, 2012. ZHANG W. Mechanism research on detecting mining-induced fractures and its aquosity in overlying strata by radon on surface[D]. Xuzhou:China University of Mining and Technology,2012. [16] 李咏梅. 铀尾矿氡析出的动力学机理研究[D]. 衡阳: 南华大学, 2018. LI Y. Research on the dynamics mechanism of radon exhalation from uranium tailings[D]. Hengyang:University of South China, 2018. [17] 张哲, 朱民安, 张永祥. 地下工程与人居环境氡防护技术[M]. 北京: 原子能出版社, 2010. ZHANG Z, ZHU M, ZHANG Y. Radon protection technology in underground engineering and human settlement environment[M]. Beijing:Atomic Energy Press, 2010. [18] Ferry C, Richon P, Beneito A, et al. Radon exhalation from uranium mill tailings: experimental validation of a 1-D model[J]. Journal of Environmental Radioactivity, 2001, 54(1): 99-108. [19] Panigrahi D C, Mishra D P, Sahu P. Evaluation of inhalation exposure contributed by backfill mill tailings in underground uranium mine[J]. Environmental Earth Sciences, 2015, 74(5): 4327-4334. [20] Rogers V C, Nielson K K. Multiphase radon generation and transport in porous materials[J]. Health Physics, 1991, 60(6): 807-815. [21] Tanner A B. Radon migration in the ground: a supplementary review:CONF-780422--(VOL.1)[R]. United States: Department of Energy, Oak Ridge, TN (USA), 1980: 5-56. [22] Internationale Atomenergie-Organisation. Measurement and calculation of radon releases from NORM residues[R]. Vienna: Internat. Atomic Energy Agency, 2013. [23] 谭凯旋, 刘泽华, 王国全. 铀尾矿氡析出的分形动力学与环境治理[M]. 北京: 科学出版社, 2016. TAN K, LIU Z, WANG G. Fractal dynamics of radon exhalation from uranium tailings and environmental remediation[M]. Beijing:Science Press, 2016. [24] Schumann R R. The radon emanation coefficient:an important tool for geologic radon potential estimations[A]. 1993: 40-47. [25] Nazaroff W W. Radon transport from soil to air[J]. Reviews of Geophysics, 1992, 30(2): 137-160. [26] Arnold B W. Radon transport//Ho C K, Webb S W. Gas transport in porous media[M]. Dordrecht: Springer Netherlands, 2006: 333-338. [27] Sasaki T, Gunji Y, Okuda T. Mathematical modeling of radon emanation[J]. Journal of Nuclear Science and Technology, 2004, 41(2): 142-151. [28] Kathren R L. Radioactivity in the environment: Sources, distribution and surveillance[M]. United States: Harvard Academic Publishers, 1984. [29] Flügge S, Zimens Κ E. Die Bestimmung von Korngrößen und von Diffusionskonstanten aus dem Emaniervermögen: (Die Theorie der Emaniermethode.)[J]. Zeitschrift für Physikalische Chemie, Oldenbourg Wissenschaftsverlag, 1939, 42B(1): 179-220. [30] Nazaroff W W, Nero A V. Radon and its decay products in indoor air[M]. New York: John Wiley and Sons Inc, 1988. [31] Griffiths A D, Zahorowski W, Element A, et al. A map of radon flux at the Australian land surface[J]. Atmospheric Chemistry and Physics, 2010, 10(18): 8969-8982. [32] Rogers V C, Nielson K K. Correlations for predicting air permeabilities and 222Rn diffusion coefficients of soils[J]. Health Physics, 1991, 61(2): 225-230. [33] Muñoz E, Frutos B, Olaya M, et al. A finite element model development for simulation of the impact of slab thickness, joints, and membranes on indoor radon concentration[J]. Journal of Environmental Radioactivity, 2017, 177: 280-289. [34] Chauhan R P, Chakarvarti S K. Radon diffusion through soil and fly ash: Effect of compaction[J]. Radiation Measurements, 2002, 35(2): 143-146. [35] 刘洪涛. 土壤氡迁移数值模拟及土壤氡对流速度的研究[D]. 北京: 中国地质大学(北京), 2018. LIU H. Study on the numerical simulation of soil radon migration and soil radon convective velocity[D]. Beijing:China University of Geosciences,2018. [36] 白云生, 林玉飞, 常桂兰, 等. 铀矿找矿中氡的迁移机制和测量的影响因素[J]. 中国核科技报告, 1996: 86-94. BAI Y, LIN Y, CHANG G, et al. Migration mechanism of radon and influencing factors of radon measurement in uranium prospecting[J]. China Nuclear Science and Technology Report, 1996:86-94. [37] King C Y, Minissale A. Seasonal variability of soil-gas radon concentration in central California[J]. Radiation Measurements, 1994, 23(4): 683-692. [38] Mishra D P, Sahu P, Panigrahi D C, et al. Assessment of 222Rn emanation from ore body and backfill tailings in low-grade underground uranium mine[J]. Environmental Science and Pollution Research, 2014, 21(3): 2305-2312. [39] Panigrahi D C, Sahu P, Mishra D P, et al. Assessment of inhalation exposure potential of broken uranium ore piles in low-grade uranium mine[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302(1): 433-439. [40] Sahu P, Mishra D P, Panigrahi D C, et al. Radon emanation from low-grade uranium ore[J]. Journal of Environmental Radioactivity, 2013, 126: 104-114. [41] Jagadeesha B G, Narayana Y. Radium and radon exhalation rate in soil samples of Hassan district of South Karnataka,India[J]. Radiation Protection Dosimetry, 2016, 171(2): 238-242. [42] Lawrence C E, Akber R A, Bollhöfer A, et al. Radon-222 exhalation from open ground on and around a uranium mine in the wet-dry tropics[J]. Journal of Environmental Radioactivity, 2009, 100(1): 1-8. [43] Sahu P, Mishra D P, Panigrahi D C, et al. Radon emanation from backfilled mill tailings in underground uranium mine[J]. Journal of Environmental Radioactivity, 2014, 130: 15-21. [44] Sahoo B K, Mayya Y S, Sapra B K, et al. Radon exhalation studies in an Indian uranium tailings pile[J]. Radiation Measurements, 2010, 45(2): 237-241. [45] Cothern C R, Smith J E. Environmental radon[M]. Boston,MA: Springer US, 1987. [46] Levinson A A, Bland C J, Dean J R. Uranium series disequilibrium in young surficial uranium deposits in southern British Columbia[J]. Canadian Journal of Earth Sciences, 1984, 21(5): 559-566. [47] Morawska L, Phillips C R. Dependence of the radon emanation coefficient on radium distribution and internal structure of the material[J]. Geochimica et Cosmochimica Acta, 1993, 57(8): 1783-1797. [48] Landa E R. Radium-226 contents and Rn emanation coefficients of particle-size fractions of alkaline, acid and mixed U mill tailings[J]. Health Physics, 1987, 52(3): 303-310. [49] Sakoda A, Hanamoto K, Ishimori Y, et al. First model of the effect of grain size on radon emanation[J]. Applied Radiation and Isotopes, 2010, 68(6): 1169-1172. [50] Sasaki T, Gunji Y, Okuda T.Mathematical modeling of radon emanation[J]. Journal of Nuclear Science and Technology, 2004, 41(2): 142-151. [51] Markkanen M, Arvela H. Radon emanation from soils[J]. Radiation Protection Dosimetry, 1992, 45(1-4): 269-272. [52] De Martino S, Sabbarese C, Monetti G. Radon emanation and exhalation rates from soils measured with an electrostatic collector[J]. Applied Radiation and Isotopes, 1998, 49(4): 407-413. [53] Hassan N M, Hosoda M, Ishikawa T, et al. Radon migration process and its influence factors:Review[J]. Japanese Journal of Health Physics, 2009, 44(2): 218-231. [54] Phong Thu H N, Van Thang N, Hao L C. The effects of some soil characteristics on radon emanation and diffusion[J]. Journal of Environmental Radioactivity, 2020, 216: 106189. [55] Nielson K K, Rogers V C, Gee G W. Diffusion of radon through soils: A pore distribution model[J]. Soil Science Society of America Journal, 1984, 48(3): 482-487. [56] Shweikani R, Giaddui T G, Durrani S A.The effect of soil parameters on the radon concentration values in the environment[J]. Radiation Measurements, 1995, 25(1-4): 581-584. [57] McPherson M J. Subsurface ventilation and environmental engineering[M]. Dordrecht: Springer Netherlands, 1993. [58] 万建华, 于长春, 熊盛青, 等. 氡气法反演燃烧煤层深度新方法[J]. 物探与化探, 2007,31(6): 556-559. WAN J, YU C, XIONG S, et al. A novel method for inversion of coal seam depth[J]. Geophysical & Geochemical Exploration, 2007,31(6): 556-559. [59] Iskandar D, Yamazawa H, Iida T. Quantification of the dependency of radon emanation power on soil temperature[J]. Applied Radiation and Isotopes, 2004, 60(6): 971-973. [60] Stranden E, Kolstad A, Lind B. The influence of moisture and temperature on radon exhalation[J]. Radiation Protection Dosimetry, 1984, 7(1-4): 55-58. [61] 张忠相, 李向阳, 邓文辉, 等. 温度对多孔射气介质氡析出影响试验研究[J]. 工业安全与环保, 2016, 42(6): 30-32. ZHANG Z, LI X, DENG W, et al. The experimental research on the impact of temperature on porous medium emanation radon exhalation[J]. Industrial Safety and Environmental Protection, 2016, 42(6): 30-32. [62] IAEA.Radon in uranium mining: Proceedings of a panel on radon in uranium mining[M]. Panel on Radon in Uranium Mining, Washington, D. C.,1975. [63] Gurau D, Stanga D, Dragusin M, et al. Review of the principal mechanism of radon in the environment[J]. Romanian Journal of Physics, 2014, 59(9-10): 904-911. [64] Strong K P, Levins D M. Effect of moisture content on radon emanation from uranium ore and tailings[J]. Health Physics, 1982, 42(1): 27-32. [65] Sahu P, Panigrahi D C, Mishra D P. A comprehensive review on sources of radon and factors affecting radon concentration in underground uranium mines[J]. Environmental Earth Sciences, 2016, 75(7): 617. [66] Hosoda M, Shimo M, Sugino M, et al. Effect of soil moisture content on radon and thoron exhalation[J]. Journal of Nuclear Science and Technology, 2007, 44(4): 664-672. [67] Menetrez M Y, Mosley R B, Snoddy R, et al. Evaluation of radon emanation from soil with varying moisture content in a soil chamber[J]. Environment International, 1996, 22(S1): 447-453. [68] Kovach E M.Meteorological influences upon the radon-content of soil-gas[J]. Transactions, American Geophysical Union, 1945, 26(2): 241. [69] Ball T K, Nicholson R A, Peachey D. Effects of meteorological variables on certain soil gases used to detect buried ore deposits[J]. Institution of Mining and Metallurgy Transactions, 1983, 92: 183-190. [70] Lindmark A, Rosen B. Radon in soil gas—Exhalation tests and in situ measurements[J]. Science of The Total Environment, 1985, 45: 397-404. [71] Schumann R R, Owen D E, Asher-Bolinder S. Weather factors affecting soil-gas radon concentrations at a single site in the semiarid western U.S.[R]. Department of the Interior, U.S. Geological Survey, 1988: 13. [72] Segovia N, Seidel J L, Monnin M. Variations of radon in soils induced by external factors[J]. Journal of Radioanalytical and Nuclear Chemistry Letters, 1987, 119(3): 199-209. [73] Klusman R W, Jaacks J A. Environmental influences upon mercury, radon and helium concentrations in soil gases at a site near Denver, Colorado[J]. Journal of Geochemical Exploration, 1987, 27(3): 259-280. [74] Monnin M M, Seidel J L. Radon and geophysics: Recent advances[J]. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 1991, 19(1-4): 375-382. [75] Gaso M I, Cervantes M L, Segovia N, et al. Atmospheric radon concentration levels[J]. Radiation Measurements, 1994, 23(1): 225-230. [76] Sundal A V, Valen V, Soldal O, et al. The influence of meteorological parameters on soil radon levels in permeable glacial sediments[J]. Science of The Total Environment, 2008, 389(2-3): 418-428. [77] Crockett R, Groves-Kirkby C, Denman A, et al. Significant annual and sub-annual cycles in indoor radon concentrations: seasonal variation and correction[J]. Geological Society, London, Special Publications, 2018, 451(1): 35-47. [78] Gavriliev S, Petrova T, Miklyaev P, et al. Variations in soil radon levels during winter and spring periods[J]. Radiation Protection Dosimetry, 2020, 191(2): 250-254. [79] Schery S D, Gaeddert D H. Measurements of the effect of cyclic atmospheric pressure variation on the flux of 222 Rn from the soil[J]. Geophysical Research Letters, 1982, 9(8): 835-838. [80] 苏日娜. 大气压力变化对于土壤氡析出率的影响[D]. 北京: 中国地质大学, 2008. SU R N. Atmospheric pressure fluctuation effects on soil radon exhalation[D]. Beijing:China University of Geosciences, 2018. [81] 程冠, 程建平, 郭秋菊. 土壤氡析出率影响因素及估算模型[J]. 中华放射医学与防护杂志, 2006, 26(05): 520-524. CHENG G, CHENG J, GUO Q. Influencing factors and mathematical model of soil radon exhalation rates[J]. Chinese Journal of Radiological Medicine and Protection, 2006, 26(5): 520-524. [82] Firstov P P, Ponomarev E A, Cherneva N V, et al. On the effects of air pressure variations on radon exhalation into the atmosphere[J]. Journal of Volcanology and Seismology, 2007, 1(6): 397-404. [83] Fujiyoshi R, Sakamoto K, Imanishi T, et al. Meteorological parameters contributing to variability in 222Rn activity concentrations in soil gas at a site in Sapporo, Japan[J]. Science of The Total Environment, 2006, 370(1): 224-234. [84] Asher-Bolinder S, Owen D E, Schumann R R. Pedologic and climatic controls on Rn-222 concentrations in soil gas, Denver, Colorado[J]. Geophysical Research Letters, 1990, 17(6): 825-828. [85] Chan S W, Lee C W, Tsui K C. Atmospheric radon in Hong Kong[J]. Journal of Environmental Radioactivity, 2010, 101(6): 494-503. [86] Kovach E M. Diurnal variations of the radon-content of soil-gas[J]. Journal of Geophysical Research, 1946, 51(1): 45. [87] Gates A E, Gundersen L C S. Geologic controls on radon[M]. Geological Society of America, 1992. [88] Megumi K, Mamuro T. Radon and thoron exhalation from the ground[J]. Journal of Geophysical Research, 1973, 78(11): 1804-1808. [89] Bowles C G, Reimer G M. Short-term fluctuations in barometric pressure, soil-gas radon, and gamma radiation:Open-File Report, 91-641[R]. U.S. Geological Survey, 1991. [90] Gavriliev S, Petrova T, Miklyaev P, et al. Variations in soil radon levels during winter and spring periods[J]. Radiation Protection Dosimetry, 2020, 191(2): 250-254. [91] Sasaki T, Gunji Y, Okuda T. Theoretical study of high radon emanation[J]. Journal of Nuclear Science and Technology, 2005, 42(2): 242-249. |