辐射防护 ›› 2020, Vol. 40 ›› Issue (6): 516-521.

• 辐射传输与屏蔽 • 上一篇    下一篇

BP神经网络算法预测多组分材料中子屏蔽效果方法研究

林海鹏, 李国栋, 陈法国, 韩毅, 梁润成   

  1. 中国辐射防护研究院,太原 030006
  • 出版日期:2020-11-20 发布日期:2021-01-27
  • 作者简介:林海鹏(1985—),男,2006年本科毕业于华北水利水电大学环境工程专业,2009年硕士毕业于中国环境科学研究院环境工程专业,副研究员。E-mail:linhpcirp@126.com

Study on BP neural network algorithm for predicting neutron shieldingeffect of multi-composition materials

LIN Haipeng, LI Guodong, CHEN Faguo, HAN Yi, LIANG Runcheng   

  1. China Institute for Radiation Protection,Taiyuan 030006
  • Online:2020-11-20 Published:2021-01-27

摘要: 针对多组分中子屏蔽材料优化设计中蒙特卡罗模拟计算时间长而对算法效率的制约,讨论了利用BP神经网络算法快速预测材料中子屏蔽效果的方法。以复合材料300种随机质量组分和其对应的蒙特卡罗计算的剂量值组成训练样本,建立了典型的3层BP神经网络模型,其剂量预测值与样本值的绝对偏差在±2以内。对训练样本之外的验证样本,绝对偏差扩大到-6.4~5.2之间。偏差分布统计显示70%以上样本的相对偏差绝对值在2%以内,定性判断该神经网络模型的计算精度和泛化能力满足优化算法使用。使用交叉验证法对网络进行二次训练,可提高训练样本的计算精度,但扩大了验证样本的计算偏差,表明神经网络建立中还需要考虑样本的拟合程度和泛化能力的平衡。

关键词: BP神经网络, 蒙特卡罗, 中子屏蔽, 材料组分

Abstract: The availability of applying BP neural network algorithm to boost the optimization process of multi-composition neutron shielding materials,in which conventional Monte Carlo simulation would cause severe time consumption,has been discussed.A typical 3-layer BP neural network model has been established with 300 random mass components of composite materials and their corresponding dose values calculated by Monte Carlo as training samples.The absolute deviations between the predicted dose value and the sample value are within ±2.For validation samples outside the training samples,the absolute deviations expend to -6.4 to 5.2.According to the deviation distribution statistics,for over 70% of the total samples,the relative deviation absolute values are within 2%.The calculation accuracy and generalization ability of the neural network model are qualitatively determined to meet the requirements of the optimization algorithm.The cross-validation method can improve the calculation accuracy of the training samples,whereas increasing the calculation deviation of the verification samples,indicating that the balance between the fitting degree and generalization ability of the samples should be considered during the establishment of the neural network.

Key words: BP neural network, Monte Carlo, neutron shielding, material composition

中图分类号: 

  • TL72