[1] LI Xinpeng, SONG Jiayue, YANG Li, et al. Source term inversion coupling kernel principal component analysis, whale optimization algorithm, and backpropagation neural networks (KPCA-WOA-BPNN) for complex dispersion scenarios[J]. Progress in Nuclear Energy, 2024, 171: 105171. [2] ZHUANG Shuhan, FANG Sheng, DONG Xinwen, et al. Local atmospheric transport behaviors of representative radionuclides during the Fukushima accident: A 200-m-resolution cross-scale study from site to 20 km[J]. Journal of Environmental Radioactivity, 2023, 265: 107212. [3] SONG Jiayue, YANG Li, LI Huanting, et al. Comparison of intelligent optimization algorithms in neural network model for nuclear accident source term evaluation[C]//ASME 2023 International Conference on Environmental Remediation and Radioactive Waste Management. Stuttgart: ASME, 2023: V001T08A006. [4] Terada H, Nagai H, Tanaka A, et al. Atmospheric-dispersion database system that can immediately provide calculation results for various source term and meteorological conditions[J]. Journal of Nuclear Science and Technology, 2020, 57(6): 745-754. [5] YANG Li, FANG Sheng, ZHUANG Shuhan, et al. Atmospheric 137Cs dispersion following the Fukushima Daiichi nuclear accident: Local-scale simulations using CALMET and LAPMOD[J]. Annals of Nuclear Energy, 2024, 195: 110137. [6] 杨力, 王存友, 陈义学, 等. 四种拉格朗日粒子浓度计算方法的评估——箱式计数法、高斯核、均匀核和抛物线核[J]. 中国环境科学, 2023, 43(7): 3404-3415. YANG Li, WANG Cunyou, CHEN Yixue, et al. Evaluation of four Lagrangian particle concentration calculation methods-box counting, Gaussian kernel, uniform kernel and parabolic kernel[J]. China Environmental Science, 2023, 43(7): 3404-3415. [7] Camelli F, Hanna S R, Löhner R. Simulation of the must field experiment using the FEFLO-urban CFD model[J]. Computer Science, 2004, 13(12): 1-14. [8] WANG Shuntan, LI Xinpeng, FANG Sheng, et al. Validation and sensitivity study of micro-SWIFT SPRAY against wind tunnel experiments for air dispersion modeling with both heterogeneous topography and complex building layouts[J]. Journal of Environmental Radioactivity, 2020, 222: 106341. [9] Hanna S, White J, Trolier J, et al. Comparisons of JU2003 observations with four diagnostic urban wind flow and Lagrangian particle dispersion models[J]. Atmospheric Environment, 2011, 45(24): 4073-4081. [10] 郝琦. 基于MPI并行计算框架的核事故后果评价系统研发[D]. 北京: 华北电力大学, 2022. [11] 樊庆旭. 基于拉格朗日烟团模型的放射性核素扩散模拟研究[D]. 北京: 华北电力大学, 2023. [12] Scire J S, Robe F R, Fernau M E, et al. A user’s guide for the CALMET meteorological model[R]. Land O′Lakes: Earth Tech, 2000. [13] LIU Yun, LI Hong, SUN Sida, et al. Enhanced air dispersion modelling at a typical Chinese nuclear power plant site: Coupling RIMPUFF with two advanced diagnostic wind models[J]. Journal of Environmental Radioactivity, 2017, 175/176: 94-104. [14] DONG Xinwen, ZHUANG Shuhan, FANG Sheng, et al. Multi-scenario validation of CALMET-RIMPUFF for local-scale atmospheric dispersion modeling around a nuclear powerplant site with complex topography[J]. Journal of Environmental Radioactivity, 2021, 229-230: 106547. [15] 杨力, 张钰杰, 方晟, 等. 气态放射性核素扩散模拟研究——分裂烟团模型的验证与应用[J]. 清华大学学报(自然科学版), 2024, 64(12): 2019-2030. YANG Li, ZHANG Yujie, FANG Sheng, et al. Research on the simulated dispersion of gaseous radionuclides: Validation and application for splitting puff dispersion model[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(12): 2019-2030. [16] 李幻婷, 杨力, 宋嘉悦, 等. 四种气象数据在福岛核事故137Cs扩散模拟中的适用性[J]. 中国环境科学, 2024, 44(11): 6025-6035. LI Huanting, YANG Li, SONG Jiayue, et al. Applicability of four types of meteorological data to Fukushima nuclear accident 137Cs simulations[J]. China Environmental Science, 2024, 44(11): 6025-6035. [17] Janicke U, Janicke L. A three-dimensional plume rise model for dry and wet plumes[J]. Atmospheric Environment, 2001, 35(5): 877-890. [18] Webster H N, Thomson D J. Validation of a lagrangian model plume rise scheme using the Kincaid data set[J]. Atmospheric Environment, 2002, 36(32): 5031-5042. [19] 中国环境科研院. 制定地方大气污染物排放标准的技术方法: GB/T 3840—1991[S]. 北京: 中国标准出版社, 1991. [20] Thykier-Nielsen S, Deme S, Mikkelsen T. Description of the atmospheric dispersion module RIMPUFF: RRORIMUG1.DOC-TN(98)-02[R]. Roskilde, Denmark: Risø National Laboratory, 1999. [21] 鲍昕杰, 杨宗甄, 陶乃贵, 等. 不同大气稳定度分类法及扩散参数方案对CALPUFF模拟结果的影响及拟合湍流方案的研究[J]. 辐射防护, 2023, 43(2): 145-154. BAO Xinjie, YANG Zongzhen, TAO Naigui, et al. Effects of different atmospheric stability classification and diffusion parameter schemes on CALPUFF simulation results and a turbulence fitting scheme[J]. Radiation Protection, 2023, 43(2): 145-154. [22] Seinfeld J H, Pandis S N. Atmospheric chemistry and physics:from air pollution to climate change[M]. 3rd ed. Hoboken:Wiley, 2016. [23] ZHANG Leiming, GONG Sunling, Padro J, et al. A size-segregated particle dry deposition scheme for an atmospheric aerosol module[J]. Atmospheric Environment, 2001, 35(3): 549-560. [24] Baklanov A, Sørensen J H. Parameterisation of radionuclide deposition in atmospheric long-range transport modelling[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2001, 26(10): 787-799. [25] Hanna S R, Hansen O R, Dharmavaram S. FLACS CFD air quality model performance evaluation with kit fox, MUST, prairie grass, and EMU observations[J]. Atmospheric Environment, 2004, 38(28): 4675-4687. [26] Hanna S, Chang J. Acceptance criteria for urban dispersion model evaluation[J]. Meteorology and Atmospheric Physics, 2012, 116(3): 133-146. [27] DONG Xinwen, ZHUANG Shuhan, FANG Sheng, et al. Site-targeted evaluation of SWIFT-RIMPUFF for local-scale air dispersion modeling around Sanmen nuclear power plant based on multi-scenario wind tunnel experiments[J]. Annals of Nuclear Energy, 2021, 164: 108593. [28] Bellasio R, Bianconi R, Mosca S, et al. Formulation of the lagrangian particle model LAPMOD and its evaluation against kincaid SF6 and SO2 datasets[J]. Atmospheric Environment, 2017, 163: 87-98. [29] Castelli S T, Armand P, Tinarelli G, et al. Validation of a Lagrangian particle dispersion model with wind tunnel and field experiments in urban environment[J]. Atmospheric Environment, 2018, 193: 273-289. [30] 刘蕴, 方晟, 李红, 等. 基于四维变分资料同化的核事故源项反演[J]. 清华大学学报(自然科学版), 2015, 55(1): 98-104. LIU Yun, FANG Sheng, LI Hong, et al. Source inversion in nuclear accidents based on 4D variational data assimilation[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 98-104. [31] Nemoto S. Similarity between natural wind in the atmosphere and model wind in a wind tunnel (II): Modeling criteria for a local wind[J]. Papers in Meteorology and Geophysics, 1961, 12: 117-128. [32] WU Siyuan, HE Jinpeng, GU Weiguo, et al. Modification to aerosols dispersion algorithms over two-dimensional hilly terrain based on wind tunnel atmospheric experiments[J]. Annals of Nuclear Energy, 2025, 213: 111165. [33] 地理空间数据云. GDEMV2 30M 分辨率数字高程数据[EB/OL]. [2024-05-13]. http://www.gscloud.cn/sources/details/421?pid=302. [34] European Space Agency (ESA). Global land cover maps[EB/OL]. [2024-05-13]. http://due.esrin.esa.int/page_globcover.php. |