[1] 罗嗣海, 钱七虎, 王驹. 高放废物地质处置库的特点及其结构型式[J]. 地质科技情报, 2007, 26(5): 83-90. LUO Sihai, QIAN Qihu, WANG Ju. Features and structural models of HLW geological repositories[J]. Geological Science and Technology Information, 2007, 26(5): 83-90. [2] Galamboš M, Daño M, Rosskopfová O, et al. Effect of gamma-irradiation on adsorption properties of Slovak bentonites[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292(2): 481-492. [3] Reed D T, Bonar S D, Weiner M F. Gamma and alpha radiation levels in a basalt high-level waste repository: potential impact on container corrosion and packing properties[J]. Coupled Processes Associated with Nuclear Waste Repositories, 1987, 32(2): 325-338. [4] 贾梅兰, 万蕾, 李洪辉, 等. 高放废物处置库单个竖直钻孔内废物包个数探究[J]. 原子能科学技术, 2015, 49(5): 787-794. JIA Meilan, WAN Lei, LI Honghui, et al. Study on package numbers in single vertical borehole in high-level waste repository[J]. Atomic Energy Science and Technology, 2015, 49(5): 787-794. [5] Allard T, Balan E, Calas G, et al. Radiation-induced defects in clay minerals: A review[J]. Nuclear Instruments and Methods in Physics Research, Section B, 2012, 277: 112-120. [6] Allard T, Calas G. Radiation effects on clay mineral properties[J]. Applied Clay Science, 2009, 43(2): 143-149. [7] Plštze M, Kahr G, Stengele R H. Alteration of clay minerals-gamma-irradiation effects on physicochemical properties[J]. Applied Clay Science, 2003, 23(1/4): 195-202. [8] Wersin P, Johnson L H, McKinley I G. Performance of the bentonite barrier at temperatures beyond 100 ℃: A critical review[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8/14): 780-788. [9] Pusch R, Karnland O, Lajudie A, et al. MX-80 clay exposed to high temperatures and gamma radiation: SKB TR 93-03[R]. Solna: Swedish Nuclear Fuel and Waste Management CO, 1993: 9-11. [10] 胡波, 刘伟, 杨仲田. 辐射和热同时作用对膨润土物理化学性质和微观结构影响的初步研究[J]. 辐射防护, 2022, 42(4): 345-353. HU Bo, LIU Wei, YANG Zhongtian. A preliminary study on the simultaneous effect of irradiation and heat on physicochemical properties and microstructure of bentonite[J]. Radiation Protection, 2022, 42(4): 345-353. [11] Holmboe M, Jonsson M, Wold S. Influence of γ-radiation on the reactivity of montmorillonite towards H2O2[J]. Radiation Physics and Chemistry, 2012, 81(2): 190-194. [12] Holmboe M, Wold S, Jonsson M, et al. Effects of γ-irradiation on the stability of colloidal Na+-Montmorillonite dispersions[J]. Applied Clay Science, 2009, 43(1): 86-90. [13] 陈永贵, 陈妮莉, 乌东北, 等. 生物炭改性高庙子膨润土对铕(Ⅲ)的吸附特性[J]. 同济大学学报(自然科学版), 2019, 47(5): 688-694, 713. CHEN Yonggui, CHEN Nili, WU Dongbei, et al. Adsorption property of Eu (Ⅲ) on bentonite modified by biochar[J]. Journal of Tongji University(Natural Science), 2019, 47(5): 688-694, 713. [14] 罗太安, 刘晓东. 高放废物深地质处置缓冲/回填材料研究进展[J]. 华东地质学院学报, 2002, 25(1): 22-26. LUO Taian, LIU Xiaodong. Research and development of buffer/backfilling material in deep geological disposal of High-Level radioactive waste[J]. Journal of East China Geological Institute, 2002, 25(1): 22-26. [15] 赵帅维, 李洪辉, 刘伟, 等. γ辐照和热作用下改性钠基膨润土对137Cs吸附性能的研究[J]. 辐射防护, 2014, 34(6): 370-375. ZHAO Shuaiwei, LI Honghui, LIU Wei, et al. Effect of gamma-ray irradiation and thermal aging on adsorption property of 137Cs in modifield sodium bentonite[J]. Radiation Protection, 2014, 34(6): 370-375. [16] ANDRA. Safety evaluation of a geological repository[R]. USA: Resource Portal for DOE Nuclear Waste Management Information, 2005. [17] Pente A S, Prema G, Bajpai R K, et al. Heat and radiation induced alterations in sorption and swelling characteristics of bentonite clays from North-West India[C]//International meeting on clays in natural and engineered barriers for radioactive waste confinement. Nantes, France: Agence Nationale Pour La Gestion Des Dechets Radioactifs-Andra, 2010: 493-494. [18] 李虎杰, 易发成. 沸石对放射性核素Cs+,Sr2+的吸附阻滞作用[J]. 矿物岩石, 2006, 26(1): 5-8. LI Hujie, YI Facheng. Radioactive nuclei Cs+ and Sr2+ adsorption on zeolite[J]. Journal of Mineralogy and Petrology, 2006, 26(1): 5-8. [19] 梁栋, 杨彪, 杨仲田, 等. 高庙子钠基膨润土热老化后矿物成分变化[J]. 中国矿业, 2020, 29(11): 212-219. LIANG Dong, YANG Biao, YANG Zhongtian, et al. The alteration on the mineral composition of GMZ sodium bentonite after thermal aging[J]. China Mining Magazine, 2020, 29(11): 212-219. [20] GoldSim Technology Group. GoldSim contaminant transport module[R]. Seattle, Washington, USA: GoldSim Technology Group, 2021. [21] Lindgren M, Lindstršm F. SR 97 radionuclide transport calculations: TR-99-23[R]. Stockholm, Sweden: Svensk Kárnbránslehantering AB, 1999. [22] Lee Y M, Hwang Y S. A GoldSim model for the safety assessment of an HLW repository[J]. Progress in Nuclear Energy, 2009, 51(6/7): 746-759. [23] International Atomic Energy Agency. “Reference biospheres” for solid radioactive waste disposal: Report of biomass theme 1 of the biosphere modelling and assessment (Biomass) program: IAEA-BIOMASS-6[R]: Vienna, Austria: IAEA, 2003. [24] Nuclear Cycle Development Institute. H12:project to establish the scientific and technical basis for HLW disposal in Japan, supporting report 3:safety evaluation of the geologic disposal system: JNC TN1410 2000-004[R]. Ibaraki, Japan: JNC, 2000. [25] 刘建琴, 熊小伟, 贾梅兰, 等. 放射性核素在花岗岩地质圈中的迁移计算[J]. 环境科学与技术, 2015, 38(S1): 495-498. LIU Jianqin, XIONG Xiaowei, JIA Meilan, et al. Radionuclide transport model in granite geosphere[J]. Environmental Science & Technology, 2015, 38(S1): 495-498. [26] 熊小伟, 刘建琴, 孙庆红. 我国高放废物地质处置安全试评价[C]//第四届废物地下处置学术研讨会. 南昌: 环境保护部核与辐射安全中心, 中国辐射防护研究院, 2012: 219-224. XIONG Xiaowei, LIU Jianqin, SUN Qinghong. A safety assessment test for geological disposal of HLW in China[C]//The 4th Symposium on Underground Waste Disposal. Nanchang: Center for Nuclear and Radiation Safety, Ministry of Environmental Protection, China Institute of Radiation Protection, 2012: 219-224. |