[1] Kim Y C,Kim K H,Son D Y,et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging [J]. Nature,2017,550: 87-91. [2] UNSCEAR. UNSCEAR 2010 Report: Summary of low-dose radiation effects on health: report of the united nations scientific committee on the effects of atomic radiation 2010[M]. New York: UN Publications, 2010. [3] Bukhvalova S Y, Asmolova N F, Lopatina T I, et al.Bismuth and thorium fluorides as efficient X-ray radiation shielding materials[J]. Radiation Physics and Chemistry, 2021, 182: 109388. [4] 李昊,王亚平,闫林萍,等. 碘化铯/天然皮革复合可穿戴X射线屏蔽材料的制备及性能[J]. 复合材料学报,2023,40(7):3852-3861. LI Hao, WANG Yaping, YAN Linping, et al. Preparation and performance of cesium iodide/natural leather wearable X-ray shielding composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3852-3861. [5] 陈晶晶,孟胜楠,刘洪玲,等. 氧化铋/聚丙烯腈复合纳米纤维膜的制备及其X射线防护性能[J]. 东华大学学报,2023,49(6):26-32+42. CHEN Jingjing, MENG Shengnan, LIU Hongling, et al. Preparation and X-ray shielding properties of bismuth oxide/polyacrylonitrile composite nanofiber film by electrospinning[J]. Journal of Donghua University(Natural Science Edition), 2023, 49(06): 26-32+42. [6] Maghrabi H A, Vijayan A, Dep P, et al. Bismuth oxide-coated fabrics for X-ray shielding [J]. Textile Research Journal, 2016, 86(6): 649-658. [7] Abdolahzadeh T, Morshedian J, Ahmadi S. Novel polyethylene/tungsten oxide/bismuth trioxide/barium sulfate/graphene oxide nanocomposites for shielding against X-ray radiations[J]. International Journal of Radiation Research, 2023, 21(1): 79-87. [8] 池晓淼,韩毅,刘立业,等. 硼化钨材料中子屏蔽性能及次级γ剂量产生的模拟研究[J]. 辐射防护,2023,43(4):343-352. CHI Xiaomiao, HAN Yi, LIU Liye, et al. Research on neutron shielding performance and the secondary γ dose simulation of Tungsten boride material[J]. Radiation Protection, 2023, 43(4): 343-352. [9] Obeid A, Balaa H E, Samad O E, et al. Attenuation parameters of HDPE filled with different nano-size and bulk WO3 for X-ray shielding applications [J]. The European Physical Journal Plus, 2022, 137(11): 1229-1231. [10] 李昊,吴承承,王志新,等. 钆-钡/天然皮革复合可穿戴X射线屏蔽材料的制备及性能[J]. 皮革科学与工程,2024,34(3):9-16. LI Hao, WU Chengcheng, WANG Zhixin, et al. Preparation and performance of Gd-Ba/natural leather wearable X-ray shielding composites[J]. Leather Science and Engineering, 2024, 34(3): 9-16. [11] 鲁义东,霍志鹏,钟国强,等. 稀土基中子和伽马复合屏蔽材料[J]. 化学进展,2023,35(8):1214-1228. LU Yidong, HUO Zhipeng, ZHONG Guoqiang, et al. Rare earth based neutron and gamma composite shielding materials[J]. Progress in Chemistry, 2023, 35(8): 1214-1228. [12] WANG B Y, GUO X L, YUAN L, et al. Micro gadolinium oxide dispersed flexible composites developed for the shielding of thermal neutron/gamma rays[J]. Nuclear Engineering and Technology, 2023, 55(5): 1763-1774. [13] Sambhudevan S, Shankar B, Saritha A, et al. Development of X-ray protective garments from rare earth-modified natural rubber composites[J]. Journal of Elastomers & Plastics, 2017, 49(6): 527-544. [14] Dutta S, Sengupta S, Chanda J, et al. Distribution of nanoclay in a new TPV/nanoclay composite prepared through dynamic vulcanization [J]. Polymer Testing, 2020, 83: 106374-106385. [15] WANG Wentao, HUANG Jiarong, ZHOU Gong, et al. Biobased PLA/NR-PMMA TPV with balanced stiffness-toughness: in-situ interfacial compatibilization, performance and toughening model[J]. Polymer Testing, 2020, 81: 106268. [16] 中国石油和化学工业协会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定:GB/T 528—2009[S]. 北京:中国标准出版社,2009. [17] 中国石油和化学工业协会. 硫化橡胶或热塑性橡胶压入硬度试验方法 第1部分:邵氏硬度计法(邵尔硬度):GB/T 531.1—2008[S]. 北京:中国标准出版社,2008. [18] 中国疾病预防控制中心辐射防护与核安全医学所. X射线防护材料衰减性能的测定:GBZ/T 147—2002 [S]. 北京:法律出版社,2004. [19] 张璇,李德红,张晓乐,等. 少铅/无铅材料对X射线屏蔽性能的检测方法研究进展[J]. 辐射防护,2023,43(5):412-421. ZHANG Xuan, LI Dehong, ZHANG Xiaole, et al. Research progress of testing methods for X-ray shielding performance of low-lead/lead-free materials[J]. Radiation Protection, 2023, 43(5): 412-421. [20] Biswas R, Sahadath H, Mollah A S, et al. Calculation of gamma-ray attenuation parameters for locally developed shielding material: polyboron[J]. Journal of Radiation Research and Applied Sciences, 2016, 9(1): 26-34. |