RADIATION PROTECTION ›› 2022, Vol. 42 ›› Issue (2): 102-110.
Previous Articles Next Articles
ZHU Mengmei1, OUYANG Tao1, HUA Tianzhen1, LI Kun1, YU Bing2
Received:
2021-07-22
Online:
2022-03-20
Published:
2022-04-29
CLC Number:
ZHU Mengmei, OUYANG Tao, HUA Tianzhen, LI Kun, YU Bing. Research progress of EC-SOD radiation resistance[J].RADIATION PROTECTION, 2022, 42(2): 102-110.
[1] Singh V K, Newman V L, Romaine P L, et al. Use of biomarkers for assessing radiation injury and efficacy of countermeasures[J]. Expert Rev Mol Diagn. 2016, 16(1):65-81. DOI: 10.1586/14737159.2016.1121102. [2] Anuranjani, Bala M. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - implication in modification of radiation damage[J]. Redox Biology, 2014, 2(8):32-46. DOI: 10.1016/j.redox.2014.02.008. [3] Antonic V, Rabbani Z N, Jackson I L, et al. Subcutaneous administration of bovine superoxide dismutase protects lungs from radiation-induced lung injury[J]. Free Radic Res, 2015, 49(10):1259-1268. DOI: 10.3109/10715762.2015.1066501. [4] Malaker K, Das R M. The effect of superoxide dismutase on the pathogenesis of radiation-induced pulmonary damage in the rat[J]. Pharmacol Ther, 1988, 39(1-3):327-330. DOI: 10.1016/0163-7258(88)90079-4. [5] Borgstahl G E O, Oberley-Deegan R E. Superoxide dismutases (SODs) and SOD mimetics[J]. Antioxidants (Basel), 2018, 7(11):156-172. DOI: 10.3390/antiox7110156. [6] Parascandolo A, Rappa F, Cappello F, et al. Extracellular superoxide dismutase expression in papillary thyroid cancer mesenchymal stem/stromal cells modulates cancer cell growth and migration[J]. Sci Rep, 2017, 7(4):14-16. DOI: 10.1038/srep41416. [7] Fisher C L, Hallewell R A, Roberts V A, et al. Probing the structural basis for enzyme-substrate recognition in Cu,Zn superoxide dismutase[J]. Free Radic Res Commun, 1991, 12(1):287-296. DOI: 10.3109/10715769109145797. [8] Ribera-Fonseca A, Inostroza-Blancheteau C, Cartes P, et al. Early induction of Fe-SOD gene expression is involved in tolerance to Mn toxicity in perennial ryegrass[J]. Plant Physiol Biochem, 2013, 7(3):77-82. DOI: 10.1016/j.plaphy.2013.08.012. [9] Azadmanesh J, Borgstahl G E O. A review of the catalytic mechanism of human manganese superoxide dismutase[J]. Antioxidants (Basel), 2018, 7(2):25-36. DOI: 10.3390/antiox7020025. [10] Miao L, St Clair D K. Regulation of superoxide dismutase genes: implications in disease[J]. Free Radic Biol Med, 2009, 47(4):344-356. DOI: 10.1016/j.freeradbiomed.2009.05.018. [11] Marklund S L. Human copper-containing superoxide dismutase of high molecular weight[J]. Proc Natl Acad Sci U S A, 1982, 79:7634-7638. DOI: 10.1073/pnas.79.24.7634. [12] Batinić-Haberle I, Rebouças J S, Spasojević I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential[J]. Antioxid Redox Signal, 2010, 13(6):877-918. DOI: 10.1089/ars.2009.2876. [13] Bonetta R. Potential therapeutic applications of MnSODs and SOD-mimetics[J]. Chemistry, 2018, 24(20):5032-5041. DOI: 10.1002/chem.201704561. [14] Allawzi A, McDermott I, Delaney C, et al. Redistribution of EC-SOD resolves bleomycin-induced inflammation via increased apoptosis of recruited alveolar macrophages[J]. FASEB J, 2019, 33(12):13465-13475. DOI: 10.1096/fj.201901038RR. [15] Paital B, Sablok G, Kumar S, et al. Investigating the conformational structure and potential site interactions of SOD inhibitors on Ec-SOD in marine mud crab scylla serrata: A molecular modeling approach[J]. Interdiscip Sci, 2016, 8(3):312-318. DOI: 10.1007/s12539-015-0110-2. [16] Levin E D. Extracellular superoxide dismutase (EC-SOD) quenches free radicals and attenuates age-related cognitive decline: opportunities for novel drug development in aging[J]. Curr Alzheimer Res, 2005, 2(2):191-196. DOI: 10.2174/1567205053585710. [17] Cheng Y K, Hwang G Y, Lin C D, et al. Altered expression profile of superoxide dismutase isoforms in nasal polyps from nonallergic patients[J]. Laryngoscope, 2006, 116(3):417-422. DOI: 10.1097/01.MLG.0000199738.37455.55. [18] Rola R, Zou Y, Huang T T, et al. Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis[J]. Free Radic Biol Med, 2007, 42(8):1133-1145. DOI: 10.1016/j.freeradbiomed.2007.01.020. [19] Zou Y, Corniola R, Leu D, et al. Extracellular superoxide dismutase is important for hippocampal neurogenesis and preservation of cognitive functions after irradiation[J]. Proc Natl Acad Sci USA, 2012, 109(52):21522-21527. DOI: 10.1073/pnas.1216913110. [20] Kang S K, Rabbani Z N, Folz R J, et al. Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury[J]. Int J Radiat Oncol Biol Phys, 2003, 57(4):1056-1066. DOI: 10.1016/s0360-3016(03)01369-5. [21] Lazarov O, Hollands C. Hippocampal neurogenesis: Learning to remember[J]. Prog Neurobiol, 2016, 138(140):1-18. DOI: 10.1016/j.pneurobio.2015.12.006. [22] Zou Y, Leu D, Chui J, et al. Effects of altered levels of extracellular superoxide dismutase and irradiation on hippocampal neurogenesis in female mice[J]. Int J Radiat Oncol Biol Phys, 2013, 87(4):777-784. DOI: 10.1016/j.ijrobp.2013.08.002. [23] Lierova A, Jelicova M, Nemcova M, et al. Cytokines and radiation-induced pulmonary injuries[J]. J Radiat Res, 2018, 59(6):709-753. DOI: 10.1093/jrr/rry067. [24] Trott K R, Herrmann T, Kasper M. Target cells in radiation pneumopathy[J]. Int J Radiat Oncol Biol Phys, 2004, 58(2):463-469. DOI: 10.1016/j.ijrobp.2003.09.045. [25] Beach T A, Groves A M, Johnston C J, et al. Recurrent DNA damage is associated with persistent injury in progressive radiation-induced pulmonary fibrosis[J]. Int J Radiat Biol, 2018, 94(12):1104-1115. DOI: 10.1080/09553002.2018.1516907. [26] Shrishrimal S, Kosmacek E A, Oberley-Deegan R E. Reactive oxygen species drive epigenetic changes in radiation-induced fibrosis[J]. Oxid Med Cell Longev, 2019, 2019:1-27.DOI: 10.1155/2019/4278658. [27] Rabbani Z N, Anscher M S, Folz R J, et al. Overexpression of extracellular superoxide dismutase reduces acute radiation induced lung toxicity[J]. BMC Cancer, 2005, 5(1):59-67. DOI: 10.1186/1471-2407-5-59. [28] Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, et al. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation[J]. Plos One, 2011, 6(1):14-86. DOI: 10.1371/journal.pone.0014486. [29] Chinnadurai R, Forsberg M H, Kink J A, et al. Use of MSCs and MSC-educated macrophages to mitigate hematopoietic acute radiation syndrome[J]. Curr Stem Cell Rep, 2020, 6(3):77-85. DOI: 10.1007/s40778-020-00176-0. [30] Sah S K, Agrahari G, Kim T Y. Insights into superoxide dismutase 3 in regulating biological and functional properties of mesenchymal stem cells[J]. Cell Biosci, 2020, 10(1):1-12. DOI: 10.1186/s13578-020-00386-3. [31] Agrahari G, Sah S K, Kim T Y. Superoxide dismutase 3 protects mesenchymal stem cells through enhanced autophagy and regulation of FoxO3a trafficking[J]. BMB Rep, 2018, 51(7):344-349. DOI: 10.5483/bmbrep.2018.51.7.078. [32] Gan J, Meng F, Zhou X, et al. Hematopoietic recovery of acute radiation syndrome by human superoxide dismutase-expressing umbilical cord mesenchymal stromal cells[J]. Cytotherapy, 2015, 17(4):403-417. DOI: 10.1016/j.jcyt.2014.11.011. [33] Hu K X, Sun Q Y, Guo M, et al. The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury[J]. Br J Radiol, 2010, 83(985):52-58. DOI: 10.1259/bjr/61042310. [34] Matsumura Y, Ananthaswamy H N. Toxic effects of ultraviolet radiation on the skin[J]. Toxicol Appl Pharmacol, 2004, 195(3):298-308. DOI: 10.1016/j.taap.2003.08.019. [35] Mancebo S E, Wang S Q. Skin cancer: role of ultraviolet radiation in carcinogenesis[J]. Rev Environ Health, 2014, 29(3):265-273. DOI: 10.1515/reveh-2014-0041. [36] Kim H Y, Sah S K, Choi S S, et al. Inhibitory effects of extracellular superoxide dismutase on ultraviolet B-induced melanogenesis in murine skin and melanocytes[J]. Life Sci, 2018, 210: 201-208. DOI: 10.1016/j.lfs.2018.08.056. [37] Nguyen N H, Tran G B, Nguyen C T. Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases[J]. J Mol Med (Berl), 2020, 98(1):59-69. DOI: 10.1007/s00109-019-01845-2. [38] Kim Y, Kim B H, Lee H, et al. Regulation of skin inflammation and angiogenesis by EC-SOD via HIF-1α and NF-κB pathways[J]. Free Radic Biol Med, 2011, 51(11):1985-1995. DOI: 10.1016/j.freeradbiomed.2011.08.027. [39] Choung B Y, Byun S J, Suh J G, et al. Extracellular superoxide dismutase tissue distribution and the patterns of superoxide dismutase mRNA expression following ultraviolet irradiation on mouse skin[J]. Exp Dermatol, 2004, 13(11):691-699. DOI: 10.1111/j.0906-6705.2004.00209.x. [40] Singh M, Alavi A, Wong R, et al. Radiodermatitis: A review of our current understanding[J]. Am J Clin Dermatol, 2016, 17(3):277-292. DOI: 10.1007/s40257-016-0186-4. [41] Amber K T, Shiman M I, Badiavas E V. The use of antioxidants in radiotherapy-induced skin toxicity[J]. Integr Cancer Ther, 2014, 13(1):38-45. DOI: 10.1177/1534735413490235. [42] Doctrow S R, Lopez A, Schock A M, et al. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin[J]. J Invest Dermatol, 2013, 133(4):1088-1096. DOI: 10.1038/jid.2012.410. [43] Manzanas García A, LÓpez Carrizosa M C, Vallejo Ocaũa C, et al. Superoxidase dismutase (SOD) topical use in oncologic patients: treatment of acute cutaneous toxicity secondary to radiotherapy[J]. Clin Transl Oncol, 2008, 10(3):163-167. DOI: 10.1007/s12094-008-0174-0. [44] Baskar R, Lee K A, Yeo R, et al. Cancer and radiation therapy: current advances and future directions[J]. Int J Med Sci, 2012, 9(3):193-199. DOI: 10.7150/ijms.3635. Epub 2012 Feb 27. [45] Gandhi S, Chandna S. Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies[J]. Cancer Metastasis Rev, 2017, 36(2):375-393. DOI: 10.1007/s10555-017-9669-x. [46] Blyth B J, Cole A J, MacManus M P, et al. Radiation therapy-induced metastasis: radiobiology and clinical implications[J]. Clin Exp Metastasis, 2018, 35(4):223-236. DOI: 10.1007/s10585-017-9867-5. [47] Che M, Wang R, Li X, et al. Expanding roles of superoxide dismutases in cell regulation and cancer[J]. Drug Discov Today, 2016, 21(1):143-149. DOI: 10.1016/j.drudis.2015.10.001. [48] Sibenaller Z A, Welsh J L, Du C, et al. Extracellular superoxide dismutase suppresses hypoxia-inducible factor-1α in pancreatic cancer[J]. Free Radic Biol Med, 2014, 69(3):357-366. DOI: 10.1016/j.freeradbiomed.2014.02.002. [49] Laukkanen M O. Extracellular superoxide dismutase: growth promoter or tumor suppressor?[J]. Oxid Med Cell Longev, 2016, 20(16):1-9. DOI: 10.1155/2016/3612589. [50] Griess B, Tom E, Domann F, et al. Extracellular superoxide dismutase and its role in cancer[J]. Free Radic Biol Med, 2017, 11(2):464-479. DOI: 10.1016/j.freeradbiomed.2017.08.013. [51] Mapuskar K A, Anderson C M, Spitz D R, et al. Utilizing superoxide dismutase mimetics to enhance radiation therapy response while protecting normal tissues[J]. Semin Radiat Oncol, 2019, 29(1):72-80. DOI: 10.1016/j.semradonc.2018.10.005. [52] Cline J M, Dugan G, Bourland J D, et al. Post-irradiation treatment with a superoxide dismutase mimic, MnTnHex-2-PyP5+, mitigates radiation injury in the lungs of non-human primates after whole-thorax exposure to ionizing radiation[J]. Antioxidants (Basel), 2018, 7(3):40. DOI: 10.3390/antiox7030040. [53] Decraene D, Smaers K, Gan D, et al. A synthetic superoxide dismutase/catalase mimetic (EUK-134) inhibits membrane-damage-induced activation of mitogen-activated protein kinase pathways and reduces p53 accumulation in ultraviolet B-exposed primary human keratinocytes[J]. J Invest Dermatol, 2004, 122(2):484-491. DOI: 10.1046/j.0022-202X.2004.22215.x. [54] Zanoni M, Cortesi M, Zamagni A, et al. The role of mesenchymal stem cells in radiation-induced lung fibrosis[J]. Int J Mol Sci, 2019, 20(16):3876. DOI: 10.3390/ijms20163876. [55] Wei L, Zhang J, Yang Z L, et al. Extracellular superoxide dismutase increased the therapeutic potential of human mesenchymal stromal cells in radiation pulmonary fibrosis[J]. Cytotherapy, 2017, 19(5):586-602. DOI: 10.1016/j.jcyt.2017.02.359. [56] Makino J, Ogasawara R, Kamiya T, et al. Royal jelly constituents increase the expression of extracellular superoxide dismutase through histone acetylation in monocytic THP-1 cells[J]. J Nat Prod, 2016, 79(4):1137-1143. DOI: 10.1021/acs.jnatprod.6b00037. [57] Adachi T, Yamada H, Hara H, et al. Increase of urinary extracellular-superoxide dismutase level correlated with cyclic adenosine monophosphate[J]. FEBS Lett, 1999, 458(3):370-374. DOI: 10.1016/s0014-5793(99)01185-0. |
[1] | SUN Chao, MENG Xianfang, QIN Peizhong, ZHANG Long, WANG Liancai, ZENG Xinmiao. Study on the development and performance of heat-resistant radiation shielding composites [J]. RADIATION PROTECTION, 2020, 40(4): 301-307. |
[2] | WANG Li, MA Dexun, Zhang Rui, ZHANG Chao, GAO Rui, LIU Shufeng. Research progress of mesenchymal stem cell for treatment of radiation injuries [J]. RADIATION PROTECTION, 2020, 40(3): 250-255. |
[3] | WANG Youyou, LIU Yulong, BIAN Huahui, CHEN Weibo, DAI Hong, FENG Junchao, QIU Mengyue. Discussion on experience in clinical treatment of the case exposed to 192Ir in the radiation accident in Nanjing [J]. RADIATION PROTECTION, 2018, 38(5): 434-438. |
[4] | Li Wenbo, Pang Hua, Zhou Jing, Wu Hong, Jiang Rong. Effects of lyceum barbarum polysaccharide (LBP) on peripheral blood and bone marrow mononuclear cells of X ray irradiated mice [J]. RADIATION PROTECTION, 2016, 36(4): 218-223. |
|