RADIATION PROTECTION ›› 2022, Vol. 42 ›› Issue (2): 111-118.
Previous Articles Next Articles
CAI Weichao, CAO Weihong
Received:
2021-01-18
Online:
2022-03-20
Published:
2022-04-29
CLC Number:
CAI Weichao, CAO Weihong. Research progress of reactive oxygen species and radiation-induced skin injury[J].RADIATION PROTECTION, 2022, 42(2): 111-118.
[1] Axent M, He J, Bass C P. An alternative approach to histopath logical validation of PET imaging for radiation therapy image guidance: a proof of concept[J]. Radiother 0ncol, 2014, 110(2): 309-316. [2] Jaworowski Z. Observations on the Chernobyl Disaster and LNT[J]. Dose Response, 2010, 8(2):148-171. [3] ZHU Y, BU Q, LIU X, et al. Neuroprotective effect of TAT-14-3-3 fusion protein against cerebral ischemia reperfusion injury in rats[J]. PLos One, 2014, 9(3): 933-934. [4] Kim J H, Kolozsvary A J, Jenrow K A, et al. Mechanisms of radiation-induced skin injury and implications for future clinical trials[J]. Int J Radiat Biol, 2013, 89(5):311-318. [5] Jakubczyk K, Dec K, Kałduńska J, et al. Reactive oxygen species-sources, functions, oxidative damage[J]. Pol Merkur Lekarski, 2020, 48(284): 124-127. [6] Husain K, Hernandez W, Ansari R A, et al. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis[J]. World J Biol Chem, 2015, 6(3): 209-217. [7] De Grey A D. Reactive oxygen species production in the mitochondrial matrix: implications for the mechanism of mitochondrial mutation accumulation[J]. Rejuvenation Res, 2005, 8(1): 13-17. [8] Benmoussa K, Authier H, Prat M, et al. P17, an original host defense peptide from ant venom, promotes antifungal activities of macrophages through the induction of C-type lectin receptors dependent on LTB4-mediated PPAR γ activation[J]. Front Immunol, 2017, 8: 1650. [9] XUE J, YU C, SHENG W, et al. The Nrf2/GCH1/BH4 Axis ameliorates radiation-induced skin injury by modulating the ROS cascade[J]. Invest Dermatol, 2017, 137(10): 2059-2068. [10] Zucker S N, Fink E E, Bagati A, et al. Nrf2 amplifies oxidative stress via induction of Klf9[J]. Mol Cell, 2014, 53(6): 916-928. [11] Parsons M J, Green D R. Mitochondria in cell death[J]. Essays Biochem, 2010, 47: 99-114. [12] ZHANG Q, DENG Y, LAi W, et al. Maternal inflammation activated ROS-p38 MAPK predisposes offspring to heart damages caused by isoproterenol via augmenting ROS generation[J]. Sci Rep, 2016, 6: 30146. [13] SHI M, HUANG J, SUN X, et al. Effect of rivaroxaban on the injury during endotoxin-induced damage to human umbilical vein endothelial cells[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2019, 31(4): 468-473. [14] Hassan W, Ding L, Gao R Y, et al. Interleukin-6 signal transduction and its role in hepatic lipid metabolic disorders[J]. Cytokine, 2014, 66(2): 133-142. [15] Schreck I, Alrawi M, Mingot J M, et al. C-jun localizes to the nucleus independent of its phosphorylation by and interaction with JNK and vice versa promotes nuclear accumulation of JNK[J]. Biochem Biophys Res Commun, 2011, 407(4): 735-740. [16] Li G B, LIU J Y, FENG X M, et al. Retigabine attenuates focal cerebral ischemic injury through inhibiting mitochondria-dependent apoptotic pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(15): 5018-5023. [17] HAN A, ZOU L, GAN X, et al. ROS generation and MAPKs activation contribute to the Ni-induced testosterone synthesis disturbance in rat Leydig cells[J]. Toxicol Lett, 2018, 290: 36-45. [18] Kapoor M, Sharma N, Sandhir R, et al. Effect of the NADPH oxidase inhibitor apocynin on ischemia-reperfusion hippocampus injury in rat brain[J]. Biomed Pharmacother, 2018, (97): 458-472. [19] Fulda S, Gorman A M, Hori O, et al. Cellular stress responses: cell survival and cell death[J]. Int J Cell Biol, 2010, 2010: 214074. [20] Gorbunov N V, Kiang J G. Up-regulation of autophagy in small intestine Paneth cells in response to total-body gamma-irradiation[J]. J Pathol, 2009, 219(2): 242-252. [21] YUAN G J, DENG J J, CAO D D, et al. Autophagic cell death induced by reactive oxygen species is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells[J]. World J Gastroenterol, 2017, 23(30): 5530-5537. [22] WANG C, LI T K, ZENG C H, et al. Iodine-125 seed radiation induces ROS-mediated apoptosis, autophagy and paraptosis in human esophageal squamous cell carcinoma cells[J]. Oncol Rep, 2020, 43: 2028-2044. [23] Lin J H, Walter P, Yen T S. Endoplasmic reticulum stress in disease pathogenesis[J]. Annu Rev Pathol, 2008, 3: 399-425. [24] Kumar P, Raman T, Swain M M, et al. Hyperglycemia-Induced oxidative-nitrosative stress induces inflammation and neurodegeneration via augmented tuberous sclerosis complex-2 (TSC-2) activation in neuronal cells[J]. Mol Neurobiol, 2017, 54(1): 238-254. [25] Cárdenas C, Foskett J K. Mitochondrial Ca(2+) signals in autophagy[J]. Cell Calcium, 2012, 52(1): 44-51. [26] Pfisterer S G, Mauthe M. Ca2+/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy[J]. Mol Pharmacol, 2011, 80(6): 1066-1075. [27] Pankiv S, Lamark T, Bruun J A, et al. Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies[J]. X J Biol Chem, 2010, 285(8): 5941-5953. [28] Guven M, Brem R, Macpherson P, et al. Oxidative damage to RPA Limits the nucleotide excision repair capacity of human cells[J]. J Invest Dermatol, 2015, 135(11): 2834-2841. [29] Czarny P, Pawlowska E, Bialkowska-Warzecha J, et al. Autophagy in DNA damage response[J]. Int J Mol Sci, 2015, 16(2): 2641-2662. [30] Chaurasia M, Bhatt A N, Das A, et al. Radiation-induced autophagy: mechanisms and consequences[J]. Free Radic Res, 2016, 50(3): 273-290. [31] Sies H. Hydrogen peroxide as a central redox signalingmolecule in physiological oxidative stress: Oxidative eustress[J]. Redox Biol, 2017, 11: 613-619. [32] 凤琦, 张晶钰. ROS与过氧化氢的研究现状及新进展[J]. 基因组学与应用生物学, 2020, 39(2): 726-731. FENG Q, ZHANG J Y. Research status and new progress on ROS and hydrogen peroxide[J]. Genomics and Applied Biology, 2020, 39 (2): 726-731. [33] WAN S, JIANG L. Erratum to: Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants[J]. Protoplasma, 2016, 253(3): 765. [34] Bhandary B, Marahatta A, Kim H R, et al. An involve-ment of oxidative stress in endoplasmic reticulumstress and its associated diseases[J]. Int J Mol Sci, 2012, 14: 434-456. [35] Diehn M, Cho R W, Lobo N A, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells[J]. Nature, 2009, 458(7239): 780-783. [36] Manda K, Kavanagh J N, Buttler D, et al. Low dose effects of ionizing radiation on normal tissue stem cells[J]. Mutat Res Rev Mutat Res, 2014, 02.003. [37] Pazzaglia S, Briganti G, Mancuso M, et al. Neurocognitive decline following radiotherapy: mechanisms and therapeutic implications[J]. Cancers (Basel) , 2020, 12(1): 146-159. [38] HUANG B, HE T, YAO Q, et al. Amifostine suppresses the side effects of radiation on BMSCs by promoting cell proliferation and reducing ROS production[J]. Stem Cells Int, 2019, 2019: 8749090. [39] Kumar S, Suman S, Fornace A J, et al. Intestinal stem cells acquire premature senescence and senescence associated secretory phenotype concurrent with persistent DNA damage after heavy ion radiation in mice[J]. Aging (Albany NY), 2019, 11(12): 4145-4158. [40] Rodrigues-Moreira S, Moreno S G, Ghinatti G, et al. Low-dose irradiation promotes persistent oxidative stress and decreases self-renewal in hematopoietic stem cells[J]. Cell Rep, 2017, 20(13): 3199-3211. [41] Ahmad I M, Abdalla M Y, Moore T A, et al. Healthcare workers occupationally exposed to ionizing radiation exhibit altered levels of inflammatory cytokines and redox parameters[J]. Antioxidants (Basel), 2019 8(1): 12-25. [42] SU L, WANG Z, HUANG F, et al. 18β-Glycyrrhetinic acid mitigates radiation-induced skin damage via NADPH oxidase/ROS/p38MAPK and NF-κB pathways[J]. Environ Toxicol Pharmacol, 2018, 60: 82-90. [43] WANG Y, XU X, ZHAO P, et al. Escin Ia suppresses the metastasis of triple-negative breast cancer by inhibiting epithelial-mesenchymal transition via down-regulating LOXL2 expression[J]. Oncotarget, 2016, 7(17): 23684-23699. [44] Carrillo-Gálvez A B, Gálvez-Peisl S, González-Correa J E, et al. GARP is a key molecule for mesenchymal stromal cell responses to TGF-β and fundamental to control mitochondrial ROS levels[J]. Stem Cells Transl Med, 2020, 9(5): 636-650. [45] Fazzi F, Njah J, Di Giuseppe M, et al. TNFR1/phox interaction and TNFR1 mitochondrial translocation Thwart silica-indu.ced pulmonary fibrosis[J]. J Immunol, 2014, 192(8): 3837-3846. [46] PEI H, ZHANG J, NIE J, et al. RAC2-P38 MAPK-dependent NADPH oxidase activity is associated with the resistance of quiescent cells to ionizing radiation[J]. Cell Cycle, 2017, 16(1): 113-122. [47] Kim J H, Kolozsvary A J, Jenrow K A, et al. Mechanisms of radiation-induced skin injury and implications for future clinical trials[J]. Int J Radiat Biol, 2013, 89(5): 311-318. [48] DI A, GAO X P, QIAN F, et al. The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation[J]. Nat Immunol, 2011, 13(1): 29-34. [49] CHEN C C, CHENG Y Y. Cyclooxygenase-2 expression is up-regulated by 2-aminobiphenyl in a ROS and MAPK-dependent signaling pathway in a bladder cancer cell line[J]. Chem Res Toxicol, 2012, 25(3): 695-705. [50] WU Q, Allouch A, Paoletti A, et al. NOX2-dependent ATM kinase activation dictates pro-inflammatory macrophage phenotype and improves effectiveness to radiation therapy[J]. Cell Death Differ, 2017, 24(9): 1632-1644. [51] 龚玉华, 徐中叶. 放射诱导旁观者效应的研究进展[J]. 医疗装备, 2019, 32(1): 201-203. GONG Y H, XU Z Y. Research progress of radiation-induced bystander effect[J]. Chinese Journal Medical Device, 2019, 32 (1): 201-203. [52] DONG C, TU W, HE M, et al. Role of endoplasmic reticulum and mitochondrion in proton microbeam radiation-induced bystander effect[J]. Radiat Res, 2020, 193(1): 63-72. [53] Genro Kashino, Yuki Tamari, Jun Kumagai, et al. Suppressive effect of ascorbic acid on the mutagenesis induced by the bystander effect through mitochondrial function[J]. Free Radic Res, 2013, 47(6-7): 474-479. [54] XU W, WANG T, XU S, et al. Radiation-induced epigenetic bystander effects demonstrated in Arabidopsis thaliana[J]. Radiat Res, 2015, 183(5): 511-524. [55] 邹佳, 宋海峰. 抗氧化物在辐射损伤防治研究中的新进展[J]. 辐射研究与辐射工艺学报, 2012, 30(3): 142-147. ZOU J, SONG H F. New progress of antioxidants in the prevention and treatment of radiation damage[J]. Journal of Radiation Research and Radiation Processing, 2012, 30 (3): 142-147. [56] Formentini L, Santacatterina F. Mitochondrial ROS production protects the intestine from inflammation through functional M2 macrophage polarization[J]. Cell Rep, 2017, 19(6): 1202-1213. [57] YAO J, CHENG Y, ZHOU M, et al. ROS scavenging MnO nanozymes for anti-inflammation[J]. Chem Sci, 2018, 9(11): 2927-2933. [58] ZHANG Y R, WANG J Y. Design and synthesis a mitochondria-targeted dihydronicotinamide as radioprotector[J]. Free Radic Biol Med, 2019, 136: 45-51. [59] Gudkov S V, Guryev E L, Gapeyev A B, et al. Unmodified hydrated С fullerene molecules exhibit antioxidant properties, prevent damage to DNA and proteins induced by reactive oxygen species and protect mice against injuries caused by radiation-induced oxidative stress[J]. Nanomedicine, 2019, 15(1): 37-46. [60] ZHANG Y R, LI Y Y, WANG J Y, et al. Synthesis and characterization of a rosmarinic acid derivative that targets mitochondria and protects against radiation-induced damage in vitro[J]. Radiat Res, 2017, 188(3) : 264-275. [61] LI M, LANG Y, GU M M, et al. Vanillin derivative VND3207 activates DNA-PKcs conferring protection against radiation-induced intestinal epithelial cells injury in vitro and in vivo[J]. Toxicol Appl Pharmacol, 2020, 387: 114855. |
[1] | ZHU Mengmei, OUYANG Tao, HUA Tianzhen, LI Kun, YU Bing. Research progress of EC-SOD radiation resistance [J]. RADIATION PROTECTION, 2022, 42(2): 102-110. |
[2] | HUANG Yue, CHEN Naiyao, ZHAO Hui, YAN Zhenyu, ZHANG Haixia, ZHAO Xuecong, ZHANG Dingping. Effects of N-acetylcysteine on oxidative stress, proliferation and apoptosis of HT22 cells induced by radiation [J]. RADIATION PROTECTION, 2021, 41(2): 165-173. |
[3] | Hu Yameng, Long Ying, Chen Kelian, Liu Bengbo, He Shuya, Huang Bo. Mechanism of radioprotection effects of Astragaloside IV on the liver cell [J]. RADIATION PROTECTION, 2017, 37(4): 309-316. |
[4] | Li Chao, Li Zhongqiu, Li Xueping, Yang Yang, Zeng Yan, Pan Xiujie, Yang Zhihua, Zhu Maoxiang, Gu Yongqing. Effects of salt-inducible kinase 2 on autophagy and apoptosis induced by ionizing radiation [J]. RADIATION PROTECTION, 2017, 37(3): 214-222. |
[5] | Li Wenbo, Pang Hua, Zhou Jing, Wu Hong, Jiang Rong. Effects of lyceum barbarum polysaccharide (LBP) on peripheral blood and bone marrow mononuclear cells of X ray irradiated mice [J]. RADIATION PROTECTION, 2016, 36(4): 218-223. |
|