RADIATION PROTECTION ›› 2020, Vol. 40 ›› Issue (4): 346-352.
Previous Articles Next Articles
YANG Haiyu, GUO Jiao, SUN Yuanming, LONG Wei
Received:
2019-09-24
Online:
2020-07-20
Published:
2020-09-21
CLC Number:
YANG Haiyu, GUO Jiao, SUN Yuanming, LONG Wei. Review on the mechanism, prevention and treatments of radiation brain injury[J].RADIATION PROTECTION, 2020, 40(4): 346-352.
[1] Asai A, Kawamoto K. Radiation-induced brain injury[J]. Brain Nerve, 2008, 60(2):123-9. [2] Gazanfar R, Nicholas F M, Robert J W. Cerebral radiation necrosis: A review of the pathobiology, diagnosis and management considerations[J]. J Clin Neurosci, 2013, 20(4): 485-502. [3] Balentova S, Adamkov M, Molecular. Cellular and functional effects of radiation-induced brain injury: a review[J]. Int J Mol Sci, 2015, 16(11):27 796-27 815. [4] Samuel T, Chao M D, Manmeet, et al. Challenges with the diagnosis and treatment of cerebral radiation necrosis[J]. Int J Radiat Oncol Biol Phys, 2013, 87(3):449-457. [5] 梁燕, 陈福慈, 张继青. 放射性脑损伤的研究进展[J]. 华南国防医学杂志, 2013, 27(02):142-145. LIANG Y, CHEN F C, ZHANG J Q. Advances in research of radiation brain injury[J]. Mil Med J S Chin, 2013, 27(02): 142-145. [6] 中国放射性脑损伤多学科协作组,中国医师协会神经内科分会脑与脊髓损害专业委员会. 放射性脑损伤诊治中国专家共识[J]. 中华神经医学杂志, 2019, 18(6):541-549. [7] 郭容,涂晓坤,李夏春,等.放射性脑损伤的发病机制及药物防治的研究进展[J].巴楚医学, 2019, 2(02):113-117. GUO R, TU X K, LI X, et al. Advances of pathogenesis and medical treatment in radiation brain injury[J]. Bachu Medical Journal, 2019, 2(02):113-117. [8] Baker D G, Krochak R J. The response of the microvascular system to radiation: a review[J]. Cancer Invest, 1989, 7(3):287-294. [9] YANG L, YANG J, LI G, et al. Pathophysiological responses in rat and mouse models of radiation-induced brain injury[J]. Mol Neurobiol, 2017, 54(2):1022-1032. [10] Balentova S, Adamkov M, Molecular. Cellular and functional effects of radiation-induced brain injury: A review[J]. Int J Mol Sci, 2015, 16(11):27796-27815. [11] Kurita H, Kawahara N, Asai A, et al. Radiation-induced apoptosis of oligodendrocytes in the adult rat brain[J]. Neurol Res, 2001, 23(8):869-874. [12] Abdulla S, Saada J, Johnson G, et al. Tumour progression or pseudoprogression? A review of post-treatment radiological appearances of glioblastoma[J]. Clin Radiol, 2015, 70(11):1299-312. [13] 贾庆明, 罗海清, 余忠华. 放射性脑损伤发病机制与治疗方法研究进展[J]. 中华实用诊断与治疗杂志, 2018, 32(12):1236-1239.. JIA Q M, LUO H Q, YU Z H. Pathogenesis and treatment of radiation-induced brain injury[J]. J Chi Pract Dx & Ther, 2018, 32(12): 1 236-1 239. [14] Faisal S A, Octavio A, Soheil Z, et al. Cerebral radiation necrosis: Incidence, pathogenesis, diagnostic challenges, and future opportunities[J]. Curr Oncol Rep, 2019, 21(8): 1 523-3 790. [15] Kos J, van Laar P J, Sinniqe P F, et al. Quantifying effects of radiotherapy-induced microvascular injury; review of established and emerging brain MRI techniques[J]. Radiother Oncol, 2019, 140: 41-53. [16] 马龙, 陈绍水. 放射性脑损伤发病机制及防治的研究与进展[J]. 中国医药科学, 2020, 10(02):37-40. MA L, CHEN S S. Research and progress on the pathogenesis and prevention of radiation-induced brain injury[J]. China Medicine and Pharmacy, 2020,10(02):37-40. [17] Piao J, Major T, Auyeung G, et al. Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation[J]. Cell Stem Cell, 2015, 16(2):198-210. [18] 廖欢, 王鸿轩, 彭英. 间充质干细胞通过调控TLR信号通路减轻放射所致BV2小胶质细胞炎症反应[J]. 中华神经医学杂志, 2017, 16(03):269-273. LIAO H, WANG H X, PENG Y. Mesenchymal stem cells mitigate inflammatory response in BV2 microglial cells caused by radiation via modulating toll-like receptor signal pathway[J]. Chinese Journal of Neuromedicine, 2017, 16(03):269-273. [19] ZHOU D, HUANG X, XIE Y, et al. Astrocytes-derived VEGF exacerbates the microvascular damage of late delayed RBI[J]. Neuroscience, 2019, 408:14-21. [20] Hayashi T, Hayashi I, Shinohara T, et al. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH[J]. Mutat Res, 2004, 556(1-2):83-91. [21] Mikkelsen R B, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms[J]. Oncogene, 2003, 22(37):5 734-5 754. [22] 硼中子俘获治疗[J].中国肿瘤临床与康复,2019,26(04):509. Boron neutron capture therapy[J]. Chinese Journal of Clinical Oncology and Rehabilitation, 2019, 26(04):509. [23] 王淼, 童永彭. 硼中子俘获治疗的进展及前景[J]. 同位素, 2020, 33(01):14-26. WANG M, TONG Y P. The progress and prospect of boron neutron capture therapy[J]. Journal of Isotopes, 2020, 33(01):14-26. [24] 江海燕, 储德林. 硼中子俘获治癌的技术进展及关键问题[J]. 物理通报, 2014, (04):114-116. JIANG H Y, CHU D L. The progression and key issues on treatment for cancer by means of boron neutron capture therapy technology[J]. Physics Bulletin, 2014, (04):114-116. [25] Aliru M L, Schoenhals J E, Venkatesulu B P, et al. Radiation therapy and immunotherapy: what is the optimal timing or sequencing?[J]. Immunotherapy, 2018, 10(4):299-316. [26] Brooks E D, Schoenhals J E, Tang C, et al. Stereotactic ablative radiation therapy combined with immunotherapy for solid tumors[J]. Cancer J, 2016, 22(4):257-266. [27] Sharabi A B, Lim M, DeWeese T L, et al. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy[J]. Lancet Oncol, 2015, 16(13): e498-e509. [28] 黄金铭, 于宁文. ~(125)Ⅰ放射性粒子治疗癌症研究进展[J/OL]. 同位素, 1-13[2020-05-29]. https://kns-cnki-net.webvpn.cams.cn/kcms/detail/11.2566.tl.20200228.1101.008.html. HUANG J M, YU N W. Progress of permanent seed implantation using 125Ⅰ-seeds for cancer therapy[J/OL]. Journal of Isotopes, 1-13[2020-05-29]. https://kns-cnki-net.webvpn.cams.cn/kcms/detail/11.2566.tl.20200228.1101.008.html. [29] SUN Y, MIAO H, ZHANG L, et al. FePt-Cys nanoparticles induce ROS-dependent cell toxicity, and enhance chemo-radiation sensitivity of NSCLC cells in vivo and in vitro[J]. Cancer letters, 2018, 418:27-40. [30] Kleinberg L, Sloan L, Grossman S, et al. Radiotherapy, lymphopenia, and host immune capacity in glioblastoma: A potentially actionable toxicity associated with reduced efficacy of radiotherapy[J]. Neurosurgery, 2019, 85(4):441-453. [31] 张威, 唐劲天, 左焕琮. 高压氧疗对脑损伤治疗作用机制的研究进展[J]. 科技导报, 2009, 27(20):111-115. ZHANG W, TANG J T, ZUO H Z. Research progress on the mechanism of the HBOT therapeutic effect for the brain injury[J]. Sci Technol Rev, 2009, 27(20): 111-115. [32] 张晓雷, 郭灵常. 高压氧治疗高原地区贝尔面瘫疗效观察[J]. 临床耳鼻咽喉科杂志, 1999, (07):44. ZHANG X L, GUO L C. Observation on the effect of hyperbaric oxygen on bell’s facial paralysis in plateau area[J]. J Clin Otorhinolaryngol Head Neck Surg, 1999, (07):44. [33] Feldmeier J J. Hyperbaric oxygen therapy and delayed radiation injuries (soft tissue and bony necrosis): 2012 update[J]. Undersea Hyperb Med, 2012, 39(6): 1 121-1 139. [34] Furuse M, Nonoguchi N, Kawabata S, et al. Delayed brain radiation necrosis: pathological review and new molecular targets for treatment[J]. Med Mol Morphol, 2015, 48(4): 183-190. [35] 张海博, 梁海乾, 涂悦, 等. 放射性脑损伤的研究现状[J]. 山东医药, 2014, 54(26):95-97. ZHANG H B, LIANG H Q, ZHANG S, et al. Research status of radioactive brain injury[J]. Shandong Med J, 2014, 54(26):95-97. [36] Chao S T, Ahluwalia M S, Barnett G H, et al. Challenges with the diagnosis and treatment of cerebral radiation necrosis[J]. Int J Radiat Oncol Biol Phys, 2013, 87(3): 449-457. [37] 伍梦思, 刘华, 肖安琪. 通窍化痰活血方治疗早期迟发型放射性脑损伤30例临床观察[J]. 湖南中医杂志, 2019, 35(03):1-3. WU M S, LIU H, XIAO A Q. Clinical effect of Tongqiao Huatan Huoxue prescription in treatment of early-stage late-onset radiation-induced brain injury: An analysis of 30 cases[J]. Hunan J Tradit Chin Med, 2019, 35(03):1-3. [38] Kale A, Piskin, Bas Y, et al. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats[J]. J Radiat Res, 2018, 59(4):404-410. [39] TONG F, ZHANG J, LIU L, et al. Corilagin attenuates radiation-induced brain injury in mice[J]. Mol Neurobiol, 2016, 53(10):6 982-6 996. [40] ZHANG Y, CHENG Z, WANG C, et al. Neuroprotective effects of Kukoamine a against radiation-induced rat brain injury through inhibition of oxidative stress and neuronal apoptosis[J]. Neurochem Res,2016, 41(10):2 549-2 558. [41] LU K, ZHANG C, WU W, et al. Rhubarb extract has a protective role against radiation-induced brain injury and neuronal cell apoptosis[J]. Mol Med Rep, 2015, 12(2):2 689-2 694. [42] GAN L, WANG Z H, ZHANG H, et al. Protective effects of shikonin on brain injury induced by carbon ion beam irradiation in mice[J]. Biomed Environ Sci, 2015, 28(2):148-151. [43] Amir Abbas Momtazi-Borojeni, Faezeh Ghasemi, Amirreza Hesari, et al. Anti-cancer and radio-sensitizing effects of curcumin in nasopharyngeal carcinoma[J]. Current Pharmaceutical Design, 2018, 24(19):2 121-2 128. [44] Motallebzadeh E, Tameh A A, Zavareh S A T, et al. Neuroprotective effect of melatonin on radiation-induced oxidative stress and apoptosis in the brainstem of rats [published online ahead of print, 2020 Apr 23][J]. J Cell Physiol, 2020, 10.1002/jcp.29722. doi:10.1002/jcp.29722 [45] ZHOU A Y, SONG B W, FU C Y, et al. Acanthopanax senticosus reduces brain injury in mice exposed to low linear energy transfer radiation[J]. Biomed Pharmacother, 2018, 99:781-790. [46] 马薇, 舒庆, 周丹, 等.益脉康片对放射性脑损伤小鼠保护作用及机制研究[J]. 药物评价研究, 2019, 42(03):450-455. MA W, SHU Q, ZHOU D, et al. Protective effects and main mechanism of Yimaikang tablet on radiation-induced brain injury in mice[J]. Drug Eval Res, 2019, 42(03):450-455. [47] 黄越, 陈乃耀,赵雪聪, 等. 氧化应激参与放射性脑损伤的研究进展[J]. 神经解剖学杂志, 2019, 35(02):221-224. HUANG Y, CHEN N Y, ZHAO X C, et al. Research progress on the role of oxidative stress in radioactive brain injury[J]. Chin J Neuroanat, 2019, 35(02): 221-224. [48] YAN R, SUN S, YANG J, et al. Nanozyme-based bandage with single-atom catalysis for brain trauma[J]. ACS Nano, 2019, 13(10):11 552-11 560. [49] MU X, WANG J, LI Y, et al. Redox trimetallic nanozyme with neutral environment preference for brain injury[J]. ACS Nano, 2019, 13(2):1 870-1 884. [50] YAN R, SUN S, YANG J, et al. Nanozyme-based bandage with single-atom catalysis for brain trauma[J]. ACS Nano, 2019, 13(10):11 552-11 560. [51] HE H, SHI X, WANG J, et al. Reactive oxygen species-induced aggregation of nanozymes for neuron injury[J]. ACS Appl Mater Interfaces, 2020, 12(1):209-216. [52] LV S, LONG W, CHEN J, et al. Dual pH-triggered catalytic selective Mn clusters for cancer radiosensitization and radioprotection[J]. Nanoscale, 2020, 12(2):548-557. [53] Caplan A I. Why are MSCs therapeutic? New data: new insight[J]. J Pathol, 2009, 217(2):318-24. [54] Bronckaers A, Hilkens P, Martens W, et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis[J]. Pharmacol Ther, 2014, 143(2): 181-196. [55] Soria B, Martin-M A, Aguilera Y, et al. Human mesenchymal stem cells prevent neurological complications of radiotherapy[J]. Front Cell Neurosci, 2019, 13:204. [56] Ullah M, Liu D D, Thakor A S. Mesenchymal stromal cell homing: mechanisms and strategies for improvement[J]. Science, 2019, 15:421-438. [57] Siu A, Wind J J, Iorgulescu J B, et al. Radiation necrosis following treatment of high grade glioma—A review of the literature and current understanding[J]. Acta Neurochir (Wien), 2012, 154(2): 191-201. [58] Murovic J A, Chang S D. The pathophysiology of cerebral radiation necrosis and the role of laser interstitial thermal therapy[J]. World Neurosurg, 2015, 83(1): 23-26. [59] KANG J Y, WU C, Tracy J, et al. Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy[J]. Epilepsia, 2016, 57(2): 325-334. [60] Patel P, Patel N V, Danish S F. Intracranial MR-guided laser-induced thermal therapy: single-center experience with the Visualase thermal therapy system[J]. J Neurosurg, 2016, 125(4):853-860. [61] Rao M S, Hargreaves E L, Khan A J, et al. Magnetic resonance-guided laser ablation improves local control for postradiosurgery recurrence and/or radiation necrosis[J]. Neurosurgery, 2014, 74(6): 658-667. [62] Rammo, Asmaro, Schultz. The safety of magnetic resonance imaging-guided laser interstitial thermal therapy for cerebral radiation necrosis[J]. J Neurooncol, 2018, 138(3): 609-617. |
[1] | YANG Suyun, HU Tingting, WANG Hongli, SHI Xiaoli,LIU Lina, TANG Guohua, CHI Cuiping. Preliminary dose estimation for medical staff during the emergencytreatment of patients with recurrent papillary thyroid cancer treatedwith radioiodine (131I) radiotherapy [J]. RADIATION PROTECTION, 2019, 39(3): 228-233. |
[2] | CHEN Zhiyuan, DONG Zhuo, WEI Wei, LU Yahui, WANG Rui, YUAN Mingcheng, JIN Shunzi. Research progress of TGF-β1 on radiation-induced pulmonary fibrosis [J]. RADIATION PROTECTION, 2018, 38(2): 171-176. |
|