[1] Ifigeneia M, Zacharenia N, Maria S, et al. Complex DNA damage: A route to radiation-induced genomic instability and carcinogenesis[J]. Cancers, 2017, 9(12):91-111. [2] Goel A, Aggarwal B B. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs [J]. Nutr Cancer, 2010, 62(7): 919-930. [3] Vashisht M, Rani P, Dahiya S, et al. Curcumin primed exosomes reverses LPS-induced pro-inflammatory gene expression in buffalo granulosa cells[J]. Journal of Cellular Biochemistry, 2017, 119(2) 1 488-1 500. [4] Fadus M C, Lau C, Bikhchandani J, et al. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent[J]. Journal of Traditional & Complementary Medicine, 2017, 7(3):339-346. [5] YANG L, ZHENG Z, QIAN C, et al. Curcumin-functionalized silk biomaterials for anti-aging utility[J]. J Colloid Interface Sci, 2017, 496: 66-77. [6] LI J, ZHOU Y, ZHANG W, et al. Relief of oxidative stress and cardiomyocyte apoptosis by using curcumin nanoparticles[J]. Colloids & Surfaces B Biointerfaces, 2017, 153:174-182. [7] LIU Y, CHENG F, LUO Y, et al. PEGylated curcumin derivative attenuates hepatic steatosis via CREB/PPAR-γ/CD36 pathway[J]. BioMed Research International, 2017, 2017(1):1-11. [8] Soltani B, Ghaemi N, Sadeghizadeh M, et al. Curcumin confers protection to irradiated THP-1 cells while its nanoformulation sensitizes these cells via apoptosis induction[J]. Cell Biology and Toxicology, 2016, 32(6):543-561. [9] Mehta H J, Patel V, Sadikot R T. Curcumin and lung cancer—a review[J]. Target Oncol, 2014, 9(4): 295-310. [10] Oliver F J, Rubia G de la, Rolli V, et al. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant[J]. J Biol Chem, 1998, 273(50): 33 533-33 539. [11] Gaziev A I. Pathways for maintenance of mitochondrial DNA integrity and mitochondrial functions in cells exposed to ionizing radiation[J]. Radiats Biol Radioecol, 2013, 53(2): 117-136. [12] Prithivirajsingh S, Story M D, Bergh, et al. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation[J]. FEBS Lett, 2004, 571(1-3): 227-232. [13] Iijima T, Mishima T, Tohyama M, et al. Mitochondrial membrane potential and intracellular ATP content after transient experimental ischemia in the cultured hippocampal neuron[J]. Neurochemistry International, 2003, 43(3):260-269. [14] Rabbani Z N, Mi J, Zhang Y, et al. Hypoxia inducible aactor 1α signaling in fractionated radiation-induced lung injury: Role of oxidative stress and tissue hypoxia[J]. Radiation Research, 2010, 173(2):165-174. [15] Higgins D F, Kimura K, Iwano M, et al. Hypoxia-inducible factor signaling in the development of tissue fibrosis[J]. Cell Cycle, 2008, 7(9):1 128-1 132. [16] Kim W Y, Oh S H, Woo J K, et al. Targeting heat shock Protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1α[J]. Cancer Research, 2009, 69(4):1 624-1 632. [17] Semenza G L, Jiang B H, Leung S W, et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1[J]. Journal of Biological Chemistry, 1997, 271(51):32 529-32 537. [18] Lunt S Y, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation[J]. Annu Rev Cell Dev Biol, 2011, 27: 441-464. [19] CHAN S Y, ZHANG Y Y, Hemann C, et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2[J]. Cell Metabolism, 2009, 10(4):273-284. [20] Corn, Paul G. Hypoxic regulation of miR-210: Shrinking targets expand HIF-1’s Influence[J]. Cancer Biology & Therapy, 2008, 7(2):265-267. [21] Soltani B, Ghaemi N, Sadeghizadeh M, et al. Redox maintenance and concerted modulation of gene expression and signaling pathways by a nanoformulation of curcumin protects peripheral blood mononuclear cells against gamma radiation[J]. Chemico-Biological Interactions, 2016, 257:81-93. [22] Thresiamma K C, George J, Kuttan R. Protective effect of curcumin, ellagic acid and bixin on radiation induced toxicity[J]. Indian J Exp Biol, 1996, 34(9): 845-847. [23] Ak T, Gulcin I. Antioxidant and radical scavenging properties of curcumin[J]. Chem Biol Interact, 2008, 174(1): 27-37. [24] 杨爱洁, 何信佳, 安永恒,等. 不同分割照射对胰腺生物学效应的影响[J].中华放射医学与防护杂志, 2011, 31(6):653-656 [25] ICRP. Recommendations of International Commission on Radiological Protection[M]. Oxford: Elsevier Science Publication, 2008: 103. [26] Ahmadu-Suka F, Gillette E L, Withrow S J, et al. Exocrine pancreatic function following intraoperative irradiation of the canine pancreas[J]. Cancer, 1988, 62(6):1 091-1 095. [27] Yamaguchi K, Nakamura K, Kimura M, et al. Intraoperative radiation enhances decline of pancreatic exocrine function after pancreatic head resection[J]. Digestive Diseases and Sciences, 2000, 45(6):1 084-1 090. [28] Hoekstra H J, Restrepo C, Kinsella T J, et al. Histopathological effects of intraoperative radiotherapy on pancreas and adjacent tissues: a postmortem analysis[J]. Journal of Surgical Oncology, 2010, 37(2):104-108. [29] Yamamori T, Yasui H, Yamazumi M, et al. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint[J]. Free Radic Biol Med, 2012, 53(2): 260-270. [30] Kam W W,Banati R B. Effects of ionizing radiation on mitochondria[J]. Free Radic Biol Med, 2013, 65: 607-619. [31] Leach J K, Tuyle G V, Lin P S, et al. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen[J]. Cancer Research, 2001, 61(10):3 894-3 901. [32] Yu-Jue W, Wen L, Chi C, et al. Irradiation induced injury reduces energy metabolism in small intestine of tibet minipigs[J]. PLoS ONE, 2013, 8(3):e58970. [33] Lall R, Ganapathy S, Yang M, et al. Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response[J]. Cell Death and Differentiation, 2014, 21(5):836-844. [34] Kozyreva E V, Eliseenko N N. Ability of energy metabolism of cells to activate repair of its genetic material after radiation damage[J]. Radiats Biol Radioecol, 2002, 42(6): 632-635. [35] Hashimoto T, Hussien R, Oommen S, et al. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis.[J]. Faseb Journal, 2007, 21(10):2 602-2 612. [36] Priyanka A, Anusree S S, Nisha V M, et al. Curcumin improves hypoxia induced dysfunctions in 3T3-L1 adipocytes by protecting mitochondria and down regulating inflammation[J]. BioFactors, 2014, 40(5):513-523. [37] Kaelin W G. ROS: really involved in oxygen sensing[J]. Cell Metabolism, 2005, 1(6):357-358. [38] Klimova T, Chandel N S. Mitochondrial complex III regulates hypoxic activation of HIF[J]. Cell Death Differ, 2008, 15(4): 660-666. [39] Meiser J, Krämer L, Sapcariu S C, et al. Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression[J]. J Biol Chem, 2016, 291(8): 3 932-3 946. [40] Requejo-Aguilar R, Lopez-Fabuel I, Fernandez E, et al. PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1[J]. Nature Communications, 2014, 5 (1):1-9. [41] Eigner D, Scholz D. Ferula asa-foetida and curcuma longa in traditional medical treatment and diet in Nepal[J]. J Ethnopharmacol, 1999, 67(1): 1-6. [42] Basnet P, Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment[J]. Molecules, 2011, 16(6): 4 567-4 598. [43] Sahu R P, Batra S, Srivastava S K. Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells[J]. Br J Cancer, 2009, 100(9): 1 425-1 433. [44] Cheng A L, Hsu C H, Lin J K, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions[J]. Anticancer research, 2000, 21(4B):2 895-2 900. [45] Bisht S, Feldmann G, Soni S, et al. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy[J]. Journal of Nanobiotechnology, 2007, 5(1):3-3. [46] Ranjan A P, Mukerjee A, Helson L, et al. Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model: Inhibition of tumor growth and angiogenesis[J]. Anticancer Res, 2013, 33(9):3 603-3 609. [47] Hegge A B, Vukicevic M, Bruzell E, et al. Solid dispersions for preparation of phototoxic supersaturated solutions for antimicrobial photodynamic therapy (aPDT): Studies on curcumin and curcuminoides L[J]. Eur J Pharm Biopharm, 2013, 83(1): 95-105. |