[1] International Committee of Radiological Protection. Recommendations of the International Commission on Radiological Protection[R].ICRP Publication 9. ICRP, 1966. [2] International Committee of Radiological Protection. Recommendations of the International Commission on Radiological Protection[R]. ICRP Publication 60. ICRP,1991. [3] NCRP. Implications of recent epidemiologic studies for the linear non-threshold model[R]. Bethesda, MD: NCRP, Commentary 27, 2018. [4] International Committee of Radiological Protection. The 2007 Recommendation of the International Commission on Radiological Protection[R]. ICRP Publication 103. ICRP, 2007. [5] Ulsh, Brant A. A critical evaluation of the NCRP commentary 27 endorsement of the linear no-threshold model of radiation effects[J]. Environmental Research,2018,167472-487. [6] 周永增. 辐射防护的生物学基础——辐射生物效应[J]. 辐射防护, 2003, 23(2):90-101. ZHOU Yongzeng. Biological basis of radiation protection—Biological effects of radiation[J]. Radiation Rrotection, 2003, 23(2):90-101. [7] 金晓东,李强. 低剂量辐射超敏感性研究进展[J]. 原子核物理评论, 2007, 24(3):228-233. JIN Xiaodong, LI Qiang. Progress in low dose radiation related hyper-radiosensitivity[J]. Nuclear Physics Review, 2007,24(3):228-233. [8] International Committee of Radiological Protection. Low dose extrapolation of radiation-related cancer risk[R].ICRP Publication 99. ICRP, 2006. [9] Csaba, Gyorgy. Hormesis and immunity: a review[J]. Acta microbiologica et immunologica Hungarica: A quarterly of the Hungarian Academy of Sciences,2019,66(2):155-168. [10] 魏新锋,王蕊,衣峻萱,等. 低剂量辐射生物效应的研究进展[J]. 中国辐射卫生,2022,31(1):113-118+128. WEI Xinfeng, WANG Rui, YI Junxuan, et al. Research progress in biological effects of low-dose radiation[J]. Chinese Journal of Radiologial Health, 2022,31(1):113-118+128. [11] Nickoloff J A, Sharma N, Allen C P, et al. Roles of homologous recombination in response to ionizing radiation-induced DNA damage[J]. Int J Radiat Biol, 2021: 1-12. [12] 周平坤. 低剂量辐射效应及给辐射防护的启示[C] //2004全国医用辐射防护与安全学术研讨会论文汇编.北京:中华医学会, 2004:98-101. [13] 陶丹,程晶. 低剂量辐射超敏感性分子机制的研究进展[J]. 肿瘤防治研究,2008,35(5):367-370. TAO Dan, CHENG Jing. Advances in molecular mechanisms of low dose radiation hypersensitivity[J]. Cancer Prevention and Teatment Research, 2008,35(5):367-370. [14] WANG Q, CHEN Y Y, CHANG H Y, et al. The role and mechanism of ATM-mediated autophagy in the transition from hyperradiosensitivity to induced radioresistance in lung cancer under low-dose radiation[J]. Front Cell Dev Biol, 2021, 9: 650819. [15] Calabrese E J, From muller to mechanism: how LNT became the default model for cancer risk assessment[J]. Environ Pollut, 2028, (214):289-302. [16] 闵锐. 辐射危害流行病学调查与医源性辐射危害评估[J]. 辐射研究与辐射工艺学报,2011,292:77-83. MIN Rui. Epidemiologic research of radiation risk and risk evaluation of medical exposure[J]. Journal of Radiation Research and Radiation Technology, 2011, 292: 77-83. [17] 周平坤. 核辐射对人体的生物学危害及医学防护基本原则[J]. 首都医科大学学报,2011,32(2):171-176. ZHOU Pingkun. The detriment of nuclear radiation on human and the protection principal[J]. Journal of Capital Medical University, 2011,32(2):171-176. [18] UNSCEAR. Sources and efects of ionizing radiation: Volume II: Efects[R]. UNSCEAR 2000 Report. New York, 2000. [19] UNSCEAR. Sources and efects of ionizing radiation: Volume Ⅰ:Sources;Volume Ⅱ:Efects[R]. UNSCEAR 2008 Report. New York,2010. [20] UNSCEAR. The Chernobyl accident. UNSCEAR's assessments of the radiation effects. (2012-07-16) [2013-08-12]. http://www.unscaer.org/unscaer/en/chernbyl.html. [21] Tharmalingam, Sujeenthar, Sreetharan, et al. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies[J]. Chemico-biological Interactions,2019,30154-67. [22] Costantini, David, Borremans, Benny. The linear no-threshold model is less realistic than threshold or hormesis-based models: An evolutionary perspective[J]. Chemico-biological Interactions,2019,30126-33. [23] Vaiserman A M, Koliada A, Zabuga O, et al. Health impacts of low-dose ionizing radiation: Current scientific debates and regulatory issues[J]. Dose-response, 2018, 16(3):1-27. [24] Kaushik N, Kim M J, Kim R K, et al. Low-dose radiation decreases tumor progression via the inhibition of the JAK1/STAT3 signaling axis in breast cancer cell lines[J]. Sci Rep, 2017,7:43361. [25] 刘长安,杨光,贾廷珍. 低剂量辐射暴露人群的流行病学研究[J]. 中国肿瘤,2002,11(2):91-93. [26] DeVita R,Oliver A,Spinelli A,et al. Health status and internal radio contamination assessment in children exposed to the fallout of the Chernobyl accident [J].Arch Environ Health, 2000,55(3):181-186. [27] Upton A C. 低水平电离辐射致癌效应剂量响应关系的评论性再评估[J]. 辐射防护通讯,2003,23(2):1-5. Upton A C. Critical reevaluation of the dose-response relationships for carcinogenic effects of low-level ionizing radiation[J]. Radiation Protection Bulletin, 2003,23(2):1-5. [28] 陈如松. 辐射的低剂量生物效应及分子流行病学研究现状[J].辐射防护通讯,2003,23(1):13-19. CHEN Rusong. Current study on the biological effects of low dose radiation and molecular epidemiology in radiation protection[J]. Radiation Protection Bulletin, 2003, 23(1): 13-19. [29] UNSCEAR. Biological mechanisms of radiation actions at low doses[R]. United Nations, New York,2012. [30] International Committee of Radiological Protection. Non-stochastic effects of ionising radiation[R]. ICRP Publication 41. ICRP, 1984. [31] 谭承军,商照荣,上官志洪,等. 核电厂风险对比分析[J]. 核安全,2012,(4):56-62. TAN Chengjun, SHANG Zhaorong, SHANGGUAN Zhihong, et al. Risk analysis on nuclear power plant[J]. Nuclear Safety, 2012,(4):56-62. [32] Calabrese, Edward J, Golden, Robert J. Why toxicologists resisted and radiation geneticists supported EPA's adoption of LNT for cancer risk assessment[J]. Chemico-biological Interactions,2019,310Article 108736-1-Article 108736-4. |