辐射防护 ›› 2022, Vol. 42 ›› Issue (4): 265-279.
黄迁明, 刘斌, 陆婷, 王波, 唐松乾, 吕焕文, 应栋川, 翟梓安
收稿日期:
2021-07-21
出版日期:
2022-07-20
发布日期:
2022-08-15
通讯作者:
刘斌。E-mail:liubin871204@126.com
作者简介:
黄迁明(1992—),男,2015年毕业于四川大学核工程与核技术专业,2020年毕业于北京大学粒子物理与原子核物理专业,获博士学位,工程师。E-mail:qianming.huang@qq.com
HUANG Qianming, LIU Bin, LU Ting, WANG Bo, TANG Songqian, LV Huanwen, YING Dongchuan, ZAI Zian
Received:
2021-07-21
Online:
2022-07-20
Published:
2022-08-15
摘要: 中子能谱解谱技术为中子能谱测量系统必要的组成部分,近几十年来国内外开展了大量研究。本文首先介绍了中子能谱常规解谱流程,包括解谱模型、响应函数、解谱误差等内容;接着详细介绍了国内外中子能谱测量技术研究现状以及中子能谱解谱算法研究现状,包括比较成熟的最小二乘算法、最大熵算法等,也有新兴的神经网络算法、遗传算法等,总结了不同解谱算法的特点;接着介绍了根据不同解谱算法发展的解谱程序,对比了不同解谱算法及程序的优缺点,基于最小二乘算法开发的SAND系列程序和基于最大熵算法开发的MAXED程序是解谱功能强大、使用最广泛的程序;最后梳理了中子能谱解谱方法的发展脉络,总结了国内和国外研究的区别,未来开发包含多种解谱方法的综合性解谱程序具备较强的应用需求。
中图分类号:
黄迁明, 刘斌, 陆婷, 王波, 唐松乾, 吕焕文, 应栋川, 翟梓安. 中子能谱测量中的解谱技术研究进展[J]. 辐射防护, 2022, 42(4): 265-279.
HUANG Qianming, LIU Bin, LU Ting, WANG Bo, TANG Songqian, LV Huanwen, YING Dongchuan, ZAI Zian. Progress in research of spectrum unfolding method on neutron spectrum measurement[J]. RADIATION PROTECTION, 2022, 42(4): 265-279.
[1] Ikuo Kondo, Kiyoshi Sakurai. Experimental evaluation of reactor neutron spectrum in irradiation field[J]. Journal of Nuclear Science and Technology, 1981,18(6): 461-472. [2] Griffin P J, Kelly J G, Luera T F, et al. Effect of new cross section evaluations on neutron spectrum determination[J]. IEEE Transactions On Nuclear Science, 1992,39(6): 2078-2085. [3] DavideChiesa, MassimilianoNastasi, Carlo Cazzaniga, et al. Measurement of the neutron flux at spallation sources using multi-foil activation[J]. Nuclear Instruments and Methods in Physics Research A, 2018: 14-24. [4] Klein H. Workplace radiation filed analysis[J]. Radiation Protection Dosimetry, 1997,70(1): 225-234. [5] Flaska M, Pozzi S A. Identification of shielded neutron sources with the liquid scintillator BC-501A using a digital pulse shape discrimination method[J]. Nuclear Instruments and Methods in Physics Research A, 2007,577:654-663. [6] Pehlivanovic B, Avdic S, Marinkovic P, et al. Comparison of unfolding approaches for monenergetic and continuous fast-neutron energy spectra[J]. Radiation Measurements, 2013,49:109-114. [7] Horst Klein, Sonja Neumann. Neutron and photon spectrometry with liquid scintillation detectors in mixed fields[J]. Nuclear Instruments and Methods in Physics Research A, 2002,476:132-142. [8] Guillaume H V, Matthieu H, Normand S, et al. Pulse shape discrimination between (fast or thermal ) neutrons and gamma rays with plastic scintillators: State of the art[J]. Nuclear Instruments and Methods in Physics Research, A, 2015,776(1): 114-128. [9] Alharbi T. Distance metrics for digital pulse-shape discrimination of scintillator detectors[J]. Radiation Physics and Chemistry, 2019,156(1): 205-209. [10] Cross W G. Neutron spectroscopy[M]. New York: Academic Press, 1988. [11] Brooks F D, Klein H. Neutron spectrometry-historical review and present status[J]. Nuclear Instruments and Methods in Physics Research A, 2002,476(1): 1-11. [12] 汲长松. 中子探测[M]. 北京:原子能出版社, 2014. JI Changsong. Neutron Detection[M]. Beijing: China Atomic Energy Press, 2014. [13] 吴治华. 原子核物理实验方法[M]. 北京:原子能出版社, 2002. WU Zhihua. Nuclear Physics Experiment[M]. Beijing: China Atomic Energy Press, 2002. [14] Pozzi S A, Bourne M M, Clarke S D. Pulse shape discrimination in the plastic scintillatior EJ-299-33[J]. Nuclear Instruments and Methods in Physics Research, A, 2013,723(1):19-23. [15] Eljen Technology Inc. EJ-276 Liquid Scintillator Data Sheet[R]. 2013. [16] Pawelczak I A, Glenn A M, Martinez H P, et al. Boron-loaded plastic scintillator with neutron-γ pulse shape discrimination capability[J]. Nuclear Instruments and Methods in Physics Research, A, 2014,27(1): 1-8. [17] Zaitseva N, Glenn A, Martinez H P, et al. Pulse shape discrimination with lithium-containing organic scintillators[J]. Nuclear Instruments and Methods in Physics Research, A, 2013,729(1): 747-754. [18] Cherepy N J, Sanner R D, Beck P R, et al. Bismuth-and lithium-loaded plastic scintillators for gamma and neutron detection[J]. Nuclear Instruments and Methods in Physics Research, A, 2015,778(1): 126-132. [19] Maybe A N, Glenn A M, Carman M L, et al. Transparent plastic scintillators for neutron detection based on lithium salicylate[J]. Nuclear Instruments and Methods in Physics Research, A, 2016,806(1): 80-86. [20] Bramblett R L, Ewing R J, Bonner T W. A new type of neutron spectrometer[J].Nuclear Instruments and Methods in Physics Research, A, 1960,9(1): 1-12. [21] Thomas D J, Alevra A V. Bonner sphere spectrometers: A critical review[J]. Nuclear Instruments and Methods in Physics Research, A, 2002,476(1): 12-20. [22] Mares V, Schraube H. Imporved response matrix of Bonner sphere spectrometers with 6LiI scintillation detector and 3He proportional counter between 15 and 100 MeV[J].Nuclear Instruments and Methods in Physics Research, A, 1995,366(1): 203-206. [23] Vylet V. Response matrix of extended Bonner sphere system[J].Nuclear Instruments and Methods in Physics Research, A, 2002,476(1): 26-30. [24] McElroy W N, Berg S, Gigas G. Neutron flux spectral determination by foil activation[J]. Nuclear Science and Engineering, 1967,27(1): 533-541. [25] Tripathy S P, Sunil C, Nandy M, et al. Activation foils unfolding for neutron spectrometry: Comparison of different deconvolution methods[J]. Nuclear Instruments and Methods in Physics Research, A, 2007,583(1): 421-425. [26] McElroy W N, Berg S, Crockett T B, et al. Measurement of neutron flux spectra by a multiple foil activation iterative method and comparison with reactor physics calculations and spectrometer measurements[J]. Nuclear Science and Engineering, 1969,36(1): 15-27. [27] Routti J T, Sandberg J V. Unfolding activation and multisphere detector data[J]. Radiation Protection Dosimetry, 1985,10(4): 103-110. [28] Reginatto M. Overview of spectral unfolding techniques and uncertainty estimation[J]. Radiation Measurements, 2010,45(1): 1323-1329. [29] Lawrence C C,Febbraro N, Massey T N, et al. Neutron response characterization for an EJ299-33 plastic scintillation detector[J]. Nuclear Instruments and Methods in Physics Research, A, 2014,627(1):1-6. [30] Pioch C, Mares V, Ruhm W, et al. Calibration of a Bonner sphere spectrometer in qusi-monoenergetic neutron fields of 244 and 387 MeV[J]. JINST, 2011,11(1): 1-19. [31] Dickens J. A Monte Carlo based computer program to determine a scintillator full energy response to neutron detection for En between 0.1 and 80 MeV[R]. ORNL-6463, 1988. [32] Dietze G, Klein H. NRESP4 and NEFF4: Monte Carlo codes for the calculation of neutron response functions and detection efficiencies for NE213 scintillation detectors[R]. PTB report PTB-ND-22, 1982. [33] Pozzi S, Padovani E, Marseguerra M. MCNP-PoliMi: a Monte-Carlo code for correlation measurements[J]. Nuclear Instruments and Methods in Physics Research A, 2003,513(3):550-558. [34] Tajik M, Ghal-Eh N, Etaati G R,et al. Modeling NE213 scintillator response to neutrons using an MCNPX-PHOTRACK hybrid code[J]. Nuclear Instruments and Methods in Physics Research A, 2013,704:104-110. [35] Agostinelli S. Geant4: A simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research A, 2003,506(3):250-303. [36] Allison J. Geant4 developments and applications[J]. IEEE transaction on Nuclear Science, 2006,53(1):1412-1419. [37] Zachary S, Hartwig, Peter Gumplinger. Simulating response functions and pulse shape discrimination of organic scintillation detectors with Geant4[J]. Nuclear Instruments and Methods in Physics Research A, 2014,737:155-162. [38] Garny S, Mares V, Ruhm W. Response functions of a Bonner sphere spectrometer calculated with Geant4[J]. Nuclear Instruments and Methods in Physics Research, A, 2009,604(1): 612-617. [39] 邓勇军,钱达志,雍明宽. 厚活化箔群截面的加工制作方法[J]. 原子能科学技术, 2008,42(1): 11-16. DENG Yongjun, QIAN Dazhi, YONG Mingkuan. Foil multiple group cross section processing method[J]. Atomic Energy Science and Technology, 2008,42(1): 11-16. [40] Manfred Matzke. Propagation of uncertainties in unfolding procedures[J]. Nuclear Instruments and Methods in Physics Research A, 2002, 476:230-241. [41] 王松林,王琦,徐小三,等. 阈探测器法测量Am-Be中子源屏蔽辐照腔内的中子能谱[J]. 原子能科学技术, 2009,43(1): 16-21. WANG Songlin, WANG Qi, XU Xiaosan. Neutron spectrum measurement from Am-Be neutron source in radiation shield cavity[J]. Atomic Energy Science and Technology, 2009,43(1): 16-21. [42] 陈晓亮,赵守智. 基于广义最小二乘法原理的中子能谱解谱程序开发及验证[J]. 原子能科学技术, 2015,49(12): 2195-2200. CHEN Xiaoliang, ZHAO Shouzhi. Development and validation of neutron spectrum unfolding code based on Generalized least Square Method[J]. Atomic Energy Science and Technology, 2015,49(12): 2195-2200. [43] 李达,陈达,江新标,等. 基于蒙特卡罗抽样的活化中子能谱测量不确定度分析[J]. 原子能科学技术, 2016,50(12): 2249-2255. LI Da, CHEN Da, JIANG Xinbiao, et al. Uncertainty analysis of activation neutron spectrum measurement based on Monte-Carlo sampling[J]. Atomic Energy Science and Technology, 2016,50(12): 2249-2255. [44] Gold R. An iterative unfolding method for response matrices[R]. Argonne National Laboratory Report, ANL-6984, USA: Illinois, 1964. [45] Seghour A, Seghour F Z. Unfolding neutron energy spectra from foil activation detector measurements with the Gold algorithm[J].Nuclear Instruments and Methods in Physics Research, A, 2001,457(1): 617-626. [46] 孙征,沈峰,白宁. 核电厂辐照监督管中子解谱程序2NP[J]. 核动力工程, 2010,31(2): 159-161. SUN Zheng, SHEN Feng, BAI Ning. Neutron spectrum adjustment code 2NP for surveillance capsule in nuclear power Plants[J]. Nuclear Power Engineering, 2010,31(2): 159-161. [47] Mazrou H, Bezoubiri F. Evaluation of a neutron spectrum from Bonner spheres measurements using a Bayesian parameter estimation combined with the traditional unfolding methods[J]. Radiation Physics and Chemistry, 2018,148(1): 33-42. [48] 曾丽娜. 临界装置中子能谱测量[D]. 中国工程物理研究院, 2014. ZENG Lina. Neutron spectrum measurement for critical assembly[D]. China Academy of Engineering Physics, 2014. [49] 周雪梅. 钍基熔盐堆中子能谱测量方法的研究[D]. 中国科学院大学, 2013. ZHOU Xuemei. Study on neutron spectrum measurement method of thorium based molten salt reactor[D]. University of the Chinese Academy of Sciences,2013. [50] Weise K, Matzke M. A priori distributions from the principle on maximum entropy for the Monte Carlo unfolding of particle energy spectra[J]. Nuclear Instruments and Methods in Physics Research A,1989, 280(1): 103-112. [51] Reginatto M,Goldenhagen P, Meumann S.Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy decenvolution code MAXED[J].Nuclear Instruments and Methods in Physics Research A, 2002,476(1):242-246. [52] Reginatto M, Goldenhagen P, Neumann S. Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED[J]. Nuclear Instruments and Methods in Physics Research A, 2002,476(1): 242-246. [53] Green T, Biegalski S, Kelly S O, et al. Neutron energy spectrum determination and flux measurement using MAXED, GRAVEL, and MCNP for RACE experiments[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008,276(1): 279-284. [54] ZHU Q J, SONG F Q, REN J, et al. The criteria for selecting a method for unfolding neutron spectra based on the information entropy theory[J]. Radiation Measurements, 2014,62(1): 22-27. [55] 熊厚华. 反应堆堆芯中子能谱在线测量方法研究[D]. 中国科学院大学, 2018. XIONG Houhua. Research of on-line neutron spectrum measurement method for nuclear reactor[D]. University of the Chinese Academy of Sciences, 2018. [56] Reginatto M. Bayesian approach for quantifying the uncertainty of neutron doses derived from spectrometric measurements[J]. Radiation Protection Dosimetry, 2006,121(1): 64-69. [57] 宋鸿鹄. AmBe中子源聚乙烯泄露中子能谱测量技术研究[D]. 中国工程物理研究院, 2017. SONG Honghu. Study on neutron spectrum measurement technology of polyethylene leakage from neutron source[D]. China Academy of Engineering Physics, 2017. [58] Bedogni R, Domingo C, Esposito A, et al. FRUIT: An operational tool for multisphere neutron spectrometry in workplaces[J]. Nuclear Instruments and Methods in Physics Research A, 2007,580(1): 1301-1309. [59] Roberto Bedogni,Carles Pomingo, Adolfo Egposito, et al. FRUIT:An operational fool for muttisphere neutron spectrometry in workplaces[J].Nuclear Instruments and Methods in Phsics Research, A, 2007,580:1301-1309. [60] Freeman D W, Edwards D R, Bolon A E. Genetic algorithms—A new technique for solving the neutron spectrum unfolding problem[J].Nuclear Instruments and Methods in Physics Research A, 1999,425(1): 549-576. [61] Mukherjee B. A high resolution neutron spectra unfolding method using the Genetic Algorithm technique[J].Nuclear Instruments and Methods in Physics Research A, 2002,476(1): 247-251. [62] Suman V, Sarka P K. Unfolding an under-determined neutron spectrum using genetic algorithm based Monte Carlo[J]. Indian Journal of Pure & Applied Physics, 2012,50(1): 501-504. [63] Suman V, Sarka P K. Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation[J]. Nuclear Instruments and Methods in Physics Research A, 2014,737(1): 76-85. [64] 王东,何彬,张全虎. 用遗传算法求解中子能谱[J]. 原子能科学技术, 2010,44(10): 1270-1275. WANG Dong, HE Bin, ZHANG Quanhu. Unfolding neutron spectrum using genetic algorithm[J]. Atomic Energy Science and Technology, 2010,44(10): 1270-1275. [65] 李建伟,李德源,刘建忠,等. 三种解谱算法求解中子能谱的解谱效果比较[J]. 核电子学与探测技术, 2017,37(2): 147-155. LI Jianwei, LI Deyuan, LIU Jianzhong. Comparison of the unfolding spectra effect of three kinds of unfolding spectra algorithm for neutron spectrum[J]. Nuclear Electronics & Detection Technology, 2017,37(2): 147-155. [66] Braga C C, Dias M S. Application of Neural Networks for unfolding neutron spectra measured by means of Bonner Spheres[J]. Nuclear Instruments and Methods in Physics Research A, 2002,476(1): 252-255. [67] Xu Y L, Flaska M, Pozzi S, et al. A sequential least-squares algorithm for neutron spectrum unfolding from pulse height distributions measured with liquid scintillators[C]. Joint International Topical Meeting on Mathematics & Computation in Nuclear Applications. California, 2007. [68] Molina F, Aguilera P, Barrientos J R, et al. Energy distribution of the neutron flux measurements at the Chilean Reactor RECH-1 using multi-foil neutron activation and the Expectation Maximization unfolding algorithm[J]. Applied Radiation and Isotopes, 2017,129(1): 28-34. [69] Candes E J. Compressive sampling[R].Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006. [70] Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006,52(2): 489-509. [71] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008,25(1): 21-30. [72] Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurement[J]. Communications on Pure and Applied Mathematics, 2010,59(8): 1207-1223. [73] Lustig M, Santos J M, Donoho D L, et al. Appliction of “Compressed Sensing” for rapid MR imaging[J]. Spars, 2010,58(1): 1182-1195. [74] LIU Bin, YANG Hongrun,LV Huanwen, et al. Study on unfolding method of neutron spectrum of BSS based on compressed sensing[J]. Nuclear Instruments and Methods in Physics Research A, 2019,925(1): 217-222. |
[1] | 刘庆云, 胡翔, 马国学, 冯月, 李立凡, 韩巧叶. γ能谱分析中土壤探测效率与密度相关性计算分析[J]. 辐射防护, 2022, 42(4): 312-316. |
[2] | 宋鸿鹄, 衣宏昌, 魏朔阳, 武祯, 张辉, 李君利, 邱睿. 吸收法在强激光与固体靶所致脉冲X射线能谱测量中的研究进展[J]. 辐射防护, 2022, 42(2): 89-101. |
[3] | 闫学文, 李华, 李德源, 李会, 牛蒙青, 乔霈. 基于SOI微剂量实验测量技术的研究现状与展望[J]. 辐射防护, 2022, 42(1): 1-10. |
[4] | 孙铭言, 张伟华, 童腾, 李道武, 张易, 黄先超, 吕宁. 新型平板电离室的研制与初步测试[J]. 辐射防护, 2022, 42(1): 71-78. |
[5] | 王瑞俊, 保莉, 李鹏翔, 李周, 宋沁楠. 放射性检测领域的能力验证[J]. 辐射防护, 2021, 41(S1): 36-39. |
[6] | 李胤, 韦应靖, 陈双强, 方登富, 崔伟, 冯梅. X射线空气比释动能(诊断水平)标准装置的建立[J]. 辐射防护, 2021, 41(S1): 133-138. |
[7] | 陈双强, 韦应靖, 李胤, 方登富, 唐智辉, 杨波. X射线空气比释动能(治疗水平)标准装置的建立[J]. 辐射防护, 2021, 41(S1): 139-144. |
[8] | 李蔚铭, 韦应靖, 李胤, 陈双强, 王明亮, 郝世东. γ射线空气比释动能(治疗水平)标准装置的建立[J]. 辐射防护, 2021, 41(S1): 145-150. |
[9] | 徐阳, 林敏, 高飞, 倪宁, 张曦. 现场校准用便携式X射线照射装置的优化设计及辐射特性研究[J]. 辐射防护, 2021, 41(2): 97-104. |
[10] | 张辉, 杨永刚, 马彦, 戴雄新. TDCR液闪分析仪Hidex 300SL和SIM-MAX LSA3000在β核素测量中的性能比较[J]. 辐射防护, 2021, 41(2): 105-111. |
[11] | 沈福. 在线式放射性液态流出物监测仪研制[J]. 辐射防护, 2020, 40(6): 533-539. |
[12] | 金涛, 孙宇, 张志鹏, 吴耀, 宋纪高, 李俊杰, 罗远攀, 裴敏, 曾波. 从理论角度降低低本底α、β测量仪净计数率探测下限研究[J]. 辐射防护, 2020, 40(6): 550-555. |
[13] | 张菁, 侯磊, 饶贤明, 刘晋瑾, 杜向阳, 张佳, 乔敏娟. 大面积表面污染测量仪主要性能测试与分析[J]. 辐射防护, 2020, 40(6): 556-560. |
[14] | 乔莉, 饶贤明, 杜向阳, 任熠, 张佳, 郭喜荣, 王彦飞. 大面积闭气式正比计数器的主要性能测试[J]. 辐射防护, 2020, 40(6): 561-564. |
[15] | 孟丹, 马弢, 李建伟, 张富国, 畅翔, 杨屹, 杨柳, 马英豪. 短寿命核素气溶胶监测相关问题探讨[J]. 辐射防护, 2020, 40(6): 565-570. |
|