[1] 杜广华. 离子微束技术及其多学科应用[J]. 原子核物理评论, 2012, 29(4): 371-376. DU Guanghua. Techniques and multi-disciplinary applications of ion microbeam[J]. Nuclear Physics Review, 2012, 29(4): 371-376. [2] 郭娜,杜广华,刘文静,等. 微束技术在放射生物学中的应用[J]. 原子核物理评论, 2016, 33(4): 471-478. GUO Na, DU Guanghua, LIU Wenjing, et al. Microbeam application in radiation biology[J]. Nuclear Physics Review, 2016, 33(4): 471-478. [3] Prise K M, Schettino G. Microbeams in radiation biology: review and critical comparison[J]. Radiation Protection Dosimetry, 2010, 143(2-4): 335-339. [4] Barberet P, Seznec H. Advances in microbeam technologies and applications to radiation biology[J]. Radiation Protection Dosimetry, 2015, 166(1-4): 182-187. [5] Ghita M, Fernandez-Palomo C, Hisanori F, et al. Microbeam evolution: from single cell irradiation to pre-clinical studies[J]. Radiation Biology, 2018, 94(8):708-718. [6] Zirkle R E, Bloom W. Irradiation of parts of individual cells[J]. Science, 1953, 117(3045): 487-492. [7] Dymnikov A D, Fishkova T Y, Yavor S Y. Spherical aberration of compound quadrupole lenses and systems[J]. Nuclear Instruments and Methods, 1965, 37: 268-275. [8] Cookson J A, Pilling F D. Proton microbeam analysis in air[J]. Physics in Medicine & Biology, 1976, 21(6): 965-969. [9] Hable V, Greubel C, Bergmaier A, et al. The live cell irradiation and observation setup at SNAKE[J]. Nuclear Instruments and Methods in Physics Research B, 2009, 267(12-13): 2090-2097. [10] Siebenwirth C, Greubel C, Drexler S E, et al. Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE[J]. Nuclear Instruments and Methods in Physics Research B, 2015, 348: 137-142. [11] Folkard M, Vojnovic B, Prise K M, et al. The application of charged-particle microbeams in radiobiology[J]. Nuclear Instruments and Methods in Physics Research B, 2002, 188(1-4): 49-54. [12] Greif K, Brede H J, Frankenberg D, et al. The PTB single ion microbeam for irradiation of living cells[J]. Nuclear Instruments and Methods in Physics Research B, 2004, 217(3): 505-512. [13] 李嘉庆,王旭飞,张杰雄,等. 复旦大学单粒子微束研制进展[J]. 原子能科学技术, 2013, 47(10): 1917-1920. LI Jiaqing, WANG Xufei, ZHANG Jiexiong, et al. Development of single-ion microbeam at Fudan University[J]. Atomic Energy Science and Technology, 2013, 47(10): 1917-1920. [14] Qureshi S, Wu Jiacheng, Kan J A. Automated alignment and focusing system for nuclear microprobes[J]. Nuclear Instruments and Methods in Physics Research B, 2019, 456: 80-85. [15] Marino S A. 50 years of the radiological research accelerator facility (RARAF)[J]. Radiation Research, 2017, 187(4): 413-423. [16] Konishi T, Oikawa M, Suya N, et al. SPICE-NIRS microbeam: a focused vertical system for proton irradiation of a single cell for radiobiological research[J]. Radiation Research, 2013, 54(4): 736-747. [17] Nagasawa H, Little J B. Induction of sister chromatid exchanges by extremely low doses of alpha-particles[J]. Cancer Research, 1992, 52: 6394-6396. [18] Sorieul S, Alfaurt P, Daudin L, et al. Aifira: An ion beam facility for multidisciplinary research[J]. Nuclear Instruments and Methods in Physics Research B, 2014, 332: 68-73. [19] 宋明涛,盛丽娜,王志光,等. 中能重离子微束装置的研制[J]. Chinese Physics C, 2008, 32(S1): 259-261. SONG Mingtao, SHENG Lina, WANG Zhiguang, et al. Development of an intermediate energy heavy-ion micro-beam irradiation system[J]. Chinese Physics C, 2008, 32(SI): 259-261. [20] Merchant M J, Jeynes J C G, Grime G W, et al. A focused scanning vertical beam for charged particle irradiation of living cells with single counted particles[J]. Radiation Research, 2012, 178(3): 182-190. [21] Voss K O, Fournier C, Taucher-Scholz G. Heavy ion microprobes: a unique tool for bystander research and other radiobiological applications[J]. New Journal of Physics, 2008, 10(7): 1-18. [22] Kamiya T, Takano K, Satoh T, et al. Microbeam complex at TIARA: Technologies to meet a wide range of applications[J]. Nuclear Instruments and Methods in Physics Research B, 2011, 269(20): 2184-2188. [23] Nakamura M, Imai Ki, Hirose M, et al. Heavy-ion microbeam system for cell irradiation at Kyoto University[J]. Nuclear Instruments and Methods in Physics Research B, 2011, 269(24): 3153-3157. [24] Bourret S, Vianna F, Deves G, et al. Fluorescence time-lapse imaging of single cells targeted with a focused scanning charged-particle microbeam[J]. Nuclear Instruments and Methods in Physics Research B, 2014, 325: 27-34. [25] Funayama T. Heavy-Ion microbeams for biological science: development of system and utilization for biological experiments in QST-Takasaki[J]. quantum beam science, 2019, 3(2): 1-13. [26] Garty G, Gard M, Jones B K, et al. Design of a novel flow-and-shoot microbeam[J]. Radiation Protection Dosimetry, 2011, 143(2-4): 344-348. [27] Ohsawa D, Furusawa Y, Kobayashi A, et al. Analysis of SPICE microbeam size using fluorescent nuclear track detector (FNTD)[J]. Nuclear Instruments and Methods in Physics Research B, 2019, 453: 9-14. [28] Miller R C, Randers-Pehrson G, Geard C R, et al. The oncogenic transforming potential of the passage of single alpha particles through mammalian cell nuclei[J]. Applied Biological Sciences, 1999, 96(1): 19-22. [29] Averbeck D, Salomaa S, Bouffler S, et al. Progress in low dose risk research: novel effects and new concepts in low dose radiobiology[J]. Mutation Research, 2018, 776: 46-69. [30] WU Jinhua, HEI T K. Focus small to find big-the microbeam story[J]. International Journal of Radiation Biology, 2018, 94(8):782-788. [31] Greubel C, Ilicic K, Rosch T, et al. Low LET proton microbeam to understand high-LET RBE by shaping spatial dose distribution[J]. Nuclear Instruments and Methods in Physics Research B, 2017, 404: 155-161. [32] Muggiolu G, Pomorski M, Claverie G, et al. Single α-particle irradiation permits real-time visualization of RNF8 accumulation at DNA damaged sites[J]. Scientific Reports, 2017, 7: 1-9. [33] Friedland W, Kundrat P, Schmitt E, et al. Modelling studies on dicentrics induction after sub-micrometer focused ion beam grid irradiation[J]. Radiation Protection Dosimetry, 2019, 183(1-2): 40-44. [34] Prise K M, Belyakov O V, Folkard M, et al. Studies of bystander effects in human fibroblasts using a charged particle microbeam[J]. International Journal of Radiation Biology, 1998, 74(6):793-798. [35] Prise K M, Schettino G, Vojnovic B, et al. Microbeam studies of the bystander response[J]. Journal of Radiation Research, 2009, 50(SA):A1-A6. [36] Zhou Hongning, Randers-Pehrson G, Waldren C A, et al. Induction of a bystander mutagenic effect of alpha particles in mammalian cells[J]. PNAS, 2000, 97(5):2099-2104. [37] SHAO Chunlin, Folkard M, Michael B D, et al. Targeted cytoplasmic irradiation induces bystander responses[J]. PNAS, 2004, 101(37):13495-13500. [38] DONG Chen, TU Wenzhi, HE Mingyuan, et al. Role of endoplasmic reticulum and mitochondrion in proton microbeam radiation-induced bystander effect[J]. Radiation Research, 2020, 193(1): 63-72. [39] HU Songling, SHAO Chunlin. Research progress of radiation induced bystander and abscopal effects in normal tissue[J]. Radiation Medicine and Protection, 2020, 1(2):69-74. [40] 史月滨,张勇,王丽. 外泌体在辐射诱导旁效应中作用的研究进展[J]. 中华放射医学与防护杂志, 2020, 40(6): 489-492. SHI Yuebin, ZHANG Yong, WANG Li. Research progress on the role of exosomes in radiation-induced bystander effect[J]. Chinese Journal of Radiological Medicine and Protection, 2020, 40(6): 489-492. [41] Kobayashi A, Autsavapromporn N, Ahmad T A F T, et al. Bystander WI-38 cells modulate DNA double-strand break repair in microbeam-targeted A549 cells through gap junction intercellular communication[J]. Radiation Protection Dosimetry, 2019, 183(1-2): 142-146. [42] Yahyapour R, Motevaseli E, Rezaeyan A, et al. Mechanisms of radiation bystander and non-targeted effects: implications to radiation carcinogenesis and radiotherapy[J]. Current Radiopharmaceuticals, 2018, 11(1):34-45. [43] Tartier L, Spenlehauer Newma H C, et al. Local DNA damage by proton microbeam irradiation induces poly(ADP-ribose) synthesis in mammalian cells[J]. Mutagenesis, 2003, 18(5):411-416. [44] Dollinger G, Habel V, Hauptner A, et al. Microirradiation of cells with energetic heavy ions[J]. Nuclear Instruments and Methods in Physics Research B, 2005, 231(1-4): 195-201. [45] Heib M, Fischer B E, Jakob B, et al. Targeted irradiation of mammalian cells using a heavy-ion microprobe[J]. Radiation Research, 2006, 165(2):231-239. [46] Bigelow A W, Geard C R, Randers-pehrson G, et al. Microbeam-integrated multiphoton imaging system[J]. Review of Scientific Intruments, 2008, 79(12): 123707. [47] Merk B, Voss K O, Muller I, et al. Photobleaching setup for the biological end-station of the darmstadt heavy-ion microprobe[J]. Nuclear Instruments and Methods in Physics Research B, 2013, 306:81-84. [48] Patrono C, Gil O M, Giesen U, et al. ‘Bioquart’ Project: design of a novel in situ protocol for the simultaneous visualisation of chromosomal aberrations and micronuclei after irradiation at microbeam facilities[J]. Radiation Protection Dosimetry, 2015, 166(1-4):197-199. [49] WU Lijun, Randers-pehrson G, XU An, et al. Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells[J]. PNAS, 1999, 96(9):4959-4964. [50] Konishi T, Kobayashi A, Ahmad T A F T, et al. Enhanced DNA double strand break repair triggered by microbeam irradiation induced cytoplasmic damage[J]. Journal of Radiation and Cancer Research, 2018, 9(4): 183-189. [51] 张宇睿,徐文清. 电离辐射对线粒体损伤的研究进展[J]. 国际放射医学核医学杂志, 2016, 40(2): 154-157. ZHANG Yurui, XU Wenqing. Damages of ionizing radiation on mitochondria[J]. International Journal of Radiation Medicine and Nuclear Medicine, 2016, 40(2): 154-157. [52] Walsh D W M, Siebenwirth C, Greubel C, et al. Live cell imaging of mitochondria following targeted irradiation in situ reveals rapid and highly localized loss of membrane potential[J]. Scientific Reports, 2017, 7(1): 46684. [53] CHEN Xue, YU Qi, WANG Xufei, et al. DNA damage response in prostate cancer cells by proton microbeam irradiation[J]. Translational Cancer Research, 2020, 9(8): 4811-4819. [54] WANG Jun, Konishi T. Nuclear factor (erythroid-derived 2)-like 2 antioxidative response mitigates cytoplasmic radiation-induced DNA double-strand breaks[J]. Cancer Science, 2019, 110(2): 686-696. [55] Siebenwirth C, Greubel C, Drexler G A, et al. Local inhibition of rRNA transcription without nucleolar segregation after targeted ion irradiation of the nucleolus[J]. Journal of Cell Science, 2019, 132(19): 232181. [56] Belyakov O V, Folkard M, Mothersill C, et al. Bystander-induced apoptosis and premature differentiation in primary urothelial explants after charged particle microbeam irradiation[J]. Radiation Protection Dosimetry, 2002, 99(1-4): 249-251. [57] Belyakov O V, Mitchell S A, Parikh, et al. Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away[J]. PNAS, 2005, 102(40):14203-14208. [58] Suzuki M, Soh Z, Yamashita H, et al. Targeted central nervous system irradiation of caenorhabditis elegans induces a limited effect on motility[J]. Biology, 2020, 9 (9): 289. [59] Yamasiki A, Suzuki M, Funayama T, et al. High-dose irradiation inhibits motility and induces autophagy in caenorhabditis elegans[J]. International Journal of Molecular Sciences, 2021, 22(18): 9810. [60] Yasuda T, Funayama T, Nagata K, et al. Collimated microbeam reveals that the proportion of non-damaged cells in irradiated blastoderm determines the success of development in Medaka (Oryzias latipes) Embryos[J]. Biology, 2020, 9 (12): 447. [61] Fukunaga H, Butterworth K T, Mcmahon S J, et al. A brief overview of the preclinical and clinical radiobiology of microbeam radiotherapy[J]. Clinical Oncology, 2021, 33 (11): 705-712. |