辐射防护 ›› 2016, Vol. 36 ›› Issue (5): 307-316.
刘红艳, 杨仲田, 左雅慧
收稿日期:
2015-06-23
出版日期:
2016-09-20
发布日期:
2021-11-15
通讯作者:
左雅慧。E-mail:yahuiz@163.com
作者简介:
刘红艳(1985—),女,2009年毕业于湖南农业大学植物保护专业,2012年获广西大学植物病理学硕士学位,助理研究员。E-mail:hyliu33@163.com
Liu Hongyan, Yang Zhongtian, Zuo Yahui
Received:
2015-06-23
Online:
2016-09-20
Published:
2021-11-15
摘要: 介绍了国内外微生物对高放废物地质处置安全性影响的研究现状,并对我国本领域未来的研究工作提出了相应的建议。
中图分类号:
刘红艳, 杨仲田, 左雅慧. 微生物对高放废物地质处置库的影响[J]. 辐射防护, 2016, 36(5): 307-316.
Liu Hongyan, Yang Zhongtian, Zuo Yahui. The effects of microorganisms on HLW-geodisposal scenarios[J]. RADIATION PROTECTION, 2016, 36(5): 307-316.
[1] 国家发展改革委. 国家核电发展专题规划(2005—2020年)[R]. 北京:国家发展改革委, 2007. [2] 潘自强, 钱七虎. 高放废物地质处置战略研究[M]. 北京: 原子能出版社, 2009. [3] King F, Humphreys P. Metcalfe R. A review of the information available to assess the risk of microbiologically influenced corrosion in waste packages ( QRS-1384L-1) [R]. 2010. [4] 王驹. 中国高放废物地质处置十年进展[M]. 北京: 核工业北京地质研究院, 2004. [5] Henry LE, Dianne KN. Geomicrobiology (fifth edition) [M]. CRC: Tayer & Francis Group, 2009. [6] Fumes H, Standigel H. Biological mediation in ocean crust alteration: How deep is the deep biosphere[J]. Earth Planet Sci Lett, 1999, 166: 97-103. [7] 李光玉,王远亮,董海良,等. 岩石中微生物学研究的分子生物学技术——中国大陆科学钻探(CCSD)微生物研究[J]. 岩石学报, 2006, 22(7): 2 107-2 110. [8] Fredrickson JK, Zachara JM, Balkwill DL,et al. Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington State[J]. Appl Environ Microbiol, 2004, 70: 4 230-4 241. [9] Sarró MI, García AM, Moreno DA. Biofilm formation in spent nuclear fuel pools and bioremediation of radioactive water[J]. Int Microbiol, 2005, 8(3): 223-230. [10] Radeva G, Selenska-Pobell S. Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and ribosomal intergenic spacer amplification retrievals[J]. Can J Microbiol, 2005, 51(11):910-23. [11] Pedersen K. The microbe project achievements of a 10-year research programme [R]. R-13-49. Microbial Analytics Sweden AB, 2013. [12] Joanne M, Horn and Annemarie M. Microbial activity at Yucca Mountain[R]. UCRL-ID-122256. Yucca Mountain Site Characterization Project, 1995. [13] Pedersen K, Arlinger J, Edlund J, et al. Microbiology of Olkiluoto and ONKALO groundwater[R]. Microbial Analytics Sweden AB, 2010. [14] Katinka W, Hugo M, Patrick B, et al. Evidence and characteristics of a diverse and metabolically active microbial community in deep subsurface clay borehole water[J]. Fems Microbiology Ecology, 2013, 86(3): 458- 473. [15] Hallbeck L and Pedersen K. Characterization of microbial processes in deep aquifers of the Fennoscandian Shield[J]. Applied Geochemistry, 2008, 23: 1796-1819. [16] Kwon MJ, Yang JS, Lee S, et al. Geochemical characteristics and microbial community composition in toxic metal-rich sediments contaminated with Au-Ag mine tailings[J]. J Hazard Mate, 2015, 296: 147-157. [17] Pedersen K. Summary report microbiology of Olkiluoto and ONKALO groundwater[R]. Microbial Analytics Sweden AB, 2012. [18] Pedersen K. Analysis of copper corrosion in compacted bentonite clay as a function of clay density and growth conditions for sulfate-reducing bacteria[J]. Journal of Applied Microbiology, 2010, 108: 1 094- 1 104. [19] Pedersen K, Arlinger J, Hallbeck A, et al. Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4 to 450 m in Olkiluoto, Finland[J]. The ISME Journal, 2008b, 2: 760-775. [20] Kyle JE, Eydal HSC, Ferris FG, et al. Viruses in granitic groundwater from 69 to 450 m depth of the Äspö hard rock laboratory, Sweden[J]. The ISME Journal, 2008, 2: 517-574. [21] Bergelin A, Pedersen K, Wallin B. Investigation of sulphide in core drilled drillholes KLX06, KAS03 and KAS09 at Laxemar and Äspö. Chemical-, microbiological- and dissolved gas data from groundwater in four drillhole sections[R]. Svensk Kärnbränslehantering AB: Stockholm, 2010. [22] Small J, Nykyri M, Helin M, et al. Experimental and modelling investigations of the biogeochemistry of gas production from low and intermediate level radioactive waste[J]. Applied Geochemistry, 2008, 23:1 383-1 418. [23] Pedersen K. Subterranean microbial populations metabolize hydrogen and acetate under in situ conditions in granitic groundwater at 450 m depth in the Äspö Hard Rock Laboratory, Sweden[J]. FEMS Microbiology Ecology, 2012a, 81:217-229. [24] Hallbeck L, Pedersen K. Characterization of microbial processes in deep aquifers of the Fennoscandian Shield[J]. Applied Geochemistry, 2008, 23: 1 796-1 819. [25] Wikieł AJ, Datsenko I, Vera M, et al. Impact of desulfovibrioalaskensis biofilms on corrosion behaviour of carbon steel in marine environment[J]. Bioelectrochemistry, 2014, 97: 52-60. [26] Lewandowski Z, Beyenal H. Mechanisms of microbially influenced corrosion[M]. Biofilms, Springer-Verlag, Berlin, 2008:35-63. [27] Gras JM. Life prediction for HLW containers-issues related to long-term extrapolation of corrosion resistance[J]. Physique, 2002, 3: 891-902. [28] Zhang P, Xu D, Li Y, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm[J]. Bioelectrochemistry, 2015. 101:14-21. [29] 蒋波,杜翠微,李晓刚,等. 典型微生物腐蚀的研究进展[J]. 石油化工腐蚀与防护, 2008, 25(4):1-4. [30] Bhat S, Sharma K, Thomas S, et al. 8-in pipeline from group gathering station to Central Tank Farm[J]. Mater Performance, 2011, 50:50-53. [31] Kan J, Chellamuthu P, Obraztsova A. Diverse bacterial groups are associated with corrosive lesions at a Granite Mountain Record Vault (GMRV)[J]. J Appl Microbiol, 2011, 111(2): 329-37. [32] Smailos E. Influence of welding and heat treatment on corrosion of a high-level waste container material carbon steel in disposal salt brines[J]. Corrosion, 2000, 56(10): 1 071-1 074. [33] Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem[J]. Appl Environ Microbiol, 2014, 80(4): 1 226-1 236. [34] 周凤英, 王美雅, 钟晓萍, 等. 不同硫杆菌菌株对放射性废物桶材腐蚀剂腐蚀物迁移之效应[J]. 防腐工程, 1997, 1: 1-11. [35] 王丽超. 高放废物处置材料对环境优势微生物生长的影响[D]. 绵阳: 西南科技大学, 2011. [36] Nuclear Energy Agency(NEA). Features, events and processes (FEPs) for geologic disposal of radioactive waste: an international database[M]. Organization for Economic Co-operation and Development (OECD), 2000. [37] 朱绒霞. 钢筋混凝土微生物腐蚀[J]. 装备环境工程, 2010, 7(1): 50-52. [38] 赵玉连, 代群威, 董发勤, 等. 短小芽孢杆菌-蒙脱石相互作用实验研究[J]. 岩石矿物学杂志, 2015, 34(6):939- 944. [39] Dai QW, Zbao YL, Dong FQ, et a1. Interaction between bentonite and Bacillus litoralis strain SWU9[J]. Applied Clay Science, 2014. 100: 88-94. [40] 成徐州, 云桂春. 微生物作用下放射性废物水泥固化体的长期稳定性测试程序[J]. 辐射防护, 2010, 30(1): 30-35. [41] Rogers RD, Knight TJ, Cheeseman CR, et al. Development of test methods for assessing microbial influenced degradation of cement-solidified radioactive and industry wastes[J]. Cement and Concrete Research, 2003, 33(12): 2 076- 2 096. [42] Lian B, Wang B, Mu P, et al. Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus[J].Geochimica et Cosmochimica Acta, 2008,72(1):87-98. [43] 曹维政, 朱云, 鲁安怀, 等. 两株异化铁还原菌与蒙脱石交互作用实验研究[J]. 矿物岩石地球化学通报, 2011, 30(3): 311-316. [44] 陈骏,姚素平,季俊峰,等. 微生物地球化学及其研究进展[J]. 地质评论, 2004, 50(6):620-632. [45] Cardenas E, Wu WM, Leigh MB, et al. Microbial communities in contaminated sediments associated with bioremediation of uranium Submicromolar levels[J]. Applied and Environmental Microbiology, 2008, 74(12): 3 718-3 729. [46] Moll H, Lütke L, Barkleit A, et al. Curium (III) speciation studies with cells of a groundwater strain of Pseudomonas fluorescens[J]. Geomicrobiol J, 2013b, 30: 337-346. [47] Moll H, Lütke L, Cherkouk A. Bacterial diversity in clay and actinide interactions with bacterial isolates in relation to nuclear waste disposal[J]. Radionuclides in the Environment, 2015, 209-229. [48] Fein JB, Daughney CJ, Yee N, et al. A chemical equllibrium model for metal adsorption onto bacterial surfaces[J]. Geochimicaet Cosmochimica Acta, 1997, 61: 3 319-3 328. [49] Fujita Y,Ferris FG,Lawson RD,et al. Calcium carbonate recipitation by Ureolytic Subsurface Bacteria[J]. Geomicrobiology Journal, 2000, 17: 305-318. [50] Nathan Y, Jeremy BF. Quantifying metal adsorption onto bacteria mixtures: a test and application of the surface complexation model[J]. Geomicrobiology Journal, 2003, 20(1): 43-61. [51] Salvage KM, Yeh GT. Development and application of a Numerical model of kinetic and equilibrium microbiological and Geochemical reactions (B10KEMOD)[J]. Journal of Hydrology, 1998, 209: 27-52. [52] Thorne MC. Is Yucca Mountain a long-term solution for disposing of US spent nuclear fuel and high-level radioactive waste [J]. J Radiol Prot, 2012, 32: 175-180. [53] 王青海, 刘艳, 司高华, 等. 高放废物包装容器材料腐蚀研究进展[J]. 腐蚀与防护. 2011, 32(1):40-44. [54] Darren MJ, Thomas FE, Joanne H. Microbial Impacts to the Near-Field Environment Geochemistry: a model for estimating microbial communities in repository drifts at Yucca Mountain[J]. Journal of Contaminant Hydrology, 2003, 62: 553- 575. [55] Xu D, Huang W, Ruschau G, et al. Laboratory investigation of MIC threat due to hydrotest using untreated seawater and subsequent exposure to pipeline fluids with and without SRB spiking[J]. Engineering Failure Analysis, 2013, 28:149-159. [56] Masurat P, Eriksson S, Pedersen K. Microbial sulphide production in compacted Wyoming bentonite MX-80 under in situ conditions relevant to a repository for high-level radioactive waste[J]. Applied Clay Science, 2010, 47: 58-64. |
[1] | 郭行, 金卫阳. 压水堆核电厂源项控制实践与改进[J]. 辐射防护, 2021, 41(3): 248-253. |
[2] | 胡屹鹏. 压水堆核电厂乏燃料水池γ剂量率变化分析[J]. 辐射防护, 2020, 40(6): 631-639. |
[3] | 谢添, 贺萌, 李婷, 朱君, 石云峰. 铀尾矿渗滤液中铀在地下水中的迁移模拟[J]. 辐射防护, 2020, 40(6): 605-612. |
[4] | 李星宇, 王旭宏, 杨球玉, 吕涛, 李昶, 赵焕梅, 王馨, 夏加国. 乏燃料深钻孔处置安全试评价[J]. 辐射防护, 2020, 40(4): 325-330. |
[5] | 孙娟, 安毅夫, 连国玺, 高扬, 杨冰. 微生物还原固化技术在铀尾矿(渣)渗水污染防控中的应用[J]. 辐射防护, 2020, 40(4): 308-315. |
[6] | 高俊义. 高放废物处置库近场裂隙水流-传热-处置室间距相互作用的三维数值分析[J]. 辐射防护, 2020, 40(3): 231-238. |
[7] | 凌辉,王驹,刘月妙,高玉峰,陈伟明,佟强. 近场核素释放率对缓冲材料参数的敏感性研究[J]. 辐射防护, 2019, 39(5): 403-409. |
[8] | 张丽莹, 李晓静, 曾进忠, 金卫阳, 毛亚蔚, 米爱军. 华龙一号活化腐蚀产物沉积源项评估[J]. 辐射防护, 2019, 39(3): 192-197. |
[9] | 陈世万, 王贵宾, 杨春和, 王勇, 史文兵. 高放废物处置库围岩开挖损伤区研究的关键问题及进展[J]. 辐射防护, 2019, 39(2): 137-149. |
[10] | 刘伟, 梁栋, 杨仲田, 冒海军, 李洪辉, 贾梅兰, 赵帅维, 毛亮. 蒙脱石含量对膨润土膨胀行为影响的试验研究[J]. 辐射防护, 2018, 38(6): 511-515. |
[11] | 凌辉, 王驹, 陈伟明, 陈亮. 高放废物地质处置安全全过程系统分析研究进展[J]. 辐射防护, 2018, 38(2): 101-109. |
[12] | 王鹏, 黄树桃, 王驹, 赵永安, 邬伦, 蔡恒, 高敏, 王洪斌, 王树红, 刘原麟. 高放废物处置库预选区地学信息数据库结构与功能设计[J]. 辐射防护, 2018, 38(1): 71-79. |
[13] | 刘刈, 陈艳, 孔彦荣, 李睿之, 聂鹏, 周一东. 超声波+四价铈去污技术研究[J]. 辐射防护, 2017, 37(1): 39-44. |
[14] | 倪有意, 卜文庭, 郭秋菊, 董微, 杨斌, 全葳, 孟瑞杰. 土壤中钚的迁移行为研究[J]. 辐射防护, 2017, 37(1): 1-7. |
[15] | 马立平. 应用随机模拟理论计算低、中放固体废物处置场核素迁移[J]. 辐射防护, 2016, 36(6): 375-380. |
|