[1] Nayak L, Lee E Q, Wen P Y. Epidemiology of brain metastases[J]. Current Oncology Reports, 2012, 14(1): 48-54. [2] 闫昱竹, 佟丹, 张秀梅, 等. 各向同性容积扫描技术T1加权成像与液体衰减反转恢复序列T2加权成像在脑转移瘤诊断中的应用[J]. 中华放射学杂志, 2013, 47(6): 555-558. YAN Yuzhu, TONG Dan, ZHANG Xiumei, et al. Application of isotropic volume scanning technique T1 weighted imaging and liquid attenuation reversal recovery sequence T2 weighted imaging in the diagnosis of brain metastases[J]. Chinese Journal of Radiology, 2013, 47(6): 555-558. [3] 邵倩, 孙涛, 李建彬, 等. 多发脑转移瘤同期加量适形调强与序贯适形放疗计划不同剂量参数比较[J]. 中华放射医学与防护杂志, 2009, 29(4): 410-411. SHAO Qian, SUN Tao, LI Jianbin, et al. Comparison of different dose parameters between simultaneous dose escalation and sequential conformal radiotherapy plans for multiple brain metastases[J]. Chinese Journal of Radiological Medicine and Protection, 2009, 29(4): 410-411. [4] 李勇, 潘绵顺, 邱书珺, 等. 非小细胞肺癌脑转移瘤的立体定向放射治疗[J]. 中华神经外科杂志, 2014, 30(7): 711-714. LI Yong, PAN Mianshun, QIU Shujun, et al. Therapeutic effect of stereotactic radiotherapy for brain metastases of non-small cell lung cancer[J]. Chinese Journal of Neurosurgery, 2014, 30(7): 711-714. [5] Chang III E. Phase III randomized clinical trial of radiosurgery with or without whole brain irradiation in patients newly diagnosed with 1 to 3 brain metastases[J]. International Journal of Radiation Oncology, Biology, Physics, 2008, 72(1). [6] Hanna S A, Mancini A, Dal Col A H, et al. Frameless image-guided radiosurgery for multiple brain metastasis using VMAT: A review and an institutional experience[J]. Frontiers in Oncology, 2019, 9: 703. [7] Krc R F, Ryckman J, Thomas E, et al. Dosimetric comparison of hyper arc single-isocenter multi-target and gamma knife based stereotactic radiosurgery for a patient with 53 brain metastases[DB/OL]. (2022-02-11)[2024-08-13]. https://assets.cureus.com/uploads/abstract/pdf/726/20220211-22049-1x4tfyz.pdf. [8] Jung H, Yoon J, Dona Lemus O, et al. Dosimetric evaluation of LINAC-based single-isocenter multi-target multi-fraction stereotactic radiosurgery with more than 20 targets: comparing MME, HyperArc, and RapidArc[J]. Radiation Oncology, 2024, 19: 19. [9] Guckenberger M, Meyer J, Vordermark D, et al. Magnitude and clinical relevance of translational and rotational patient setup errors: A cone-beam CT study[J]. International Journal of Radiation Oncology, Biology, Physics, 2006, 65(3): 934-942. [10] van Santvoort J, Wiggenraad R, Bos P. Positioning accuracy in stereotactic radiotherapy using a mask system with added vacuum mouth piece and stereoscopic X-ray positioning[J]. International Journal of Radiation Oncology, Biology, Physics, 2008, 72(1): 261-267. [11] Rosenfelder N A, Corsini L, McNair H, et al. Achieving the relocation accuracy of stereotactic frame-based cranial radiotherapy in a three-point thermoplastic shell[J]. Clinical Oncology (Royal College of Radiologists (Great Britain)), 2013, 25(1): 66-73. [12] Sagawa T, Ohira S, Ueda Y, et al. Dosimetric effect of rotational setup errors in stereotactic radiosurgery with HyperArc for single and multiple brain metastases[J]. Journal of Applied Clinical Medical Physics, 2019, 20(10): 84-91. [13] XU Hui, ZHANG Zunhao, TIAN Bo, et al. Evaluation of corrective effect of 6 degree of freedom couch on setup errors in intensity modulated radiotherapy for postoperative rectal cancer patients[J]. Frontiers in Oncology, 2023, 13: 1030599. [14] Nakano H, Tanabe S, Utsunomiya S, et al. Effect of setup error in the single-isocenter technique on stereotactic radiosurgery for multiple brain metastases[J]. Journal of Applied Clinical Medical Physics, 2020, 21(12): 155-165. [15] Chang J. A statistical model for analyzing the rotational error of single isocenter for multiple targets technique[J]. Medical Physics, 2017, 44(6): 2115-2123. [16] Roper J, Chanyavanich V, Betzel G, et al. Single-isocenter multiple-target stereotactic radiosurgery: Risk of compromised coverage[J]. International Journal of Radiation Oncology, Biology, Physics, 2015, 93(3): 540-546. [17] Selvan K T, Padma G, Revathy M K, et al. Dosimetric effect of rotational setup errors in single-isocenter volumetric-modulated arc therapy of multiple brain metastases[J]. Journal of Medical Physics, 2019, 44(2): 84-90. [18] Ruggieri R, Naccarato S, Mazzola R, et al. Linac-based VMAT radiosurgery for multiple brain lesions: Comparison between a conventional multi-isocenter approach and a new dedicated mono-isocenter technique[J]. Radiation Oncology, 2018, 13(1): 38. [19] Fujimoto D, von Eyben R, Gibbs I C, et al. Imaging changes over 18 months following stereotactic radiosurgery for brain metastases: Both late radiation necrosis and tumor progression can occur[J]. Journal of Neuro-oncology, 2018, 136(1): 207-212. [20] Boothe D, Young R, Yamada Yo shia, et al. Bevacizumab as a treatment for radiation necrosis of brain metastases post stereotactic radiosurgery[J]. Neuro-oncology, 2013, 15(9): 1257-1263. [21] Kirkpatrick J P, WANG Zhiheng, Sampson J H, et al. Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial[J]. International Journal of Radiation Oncology, Biology, Physics, 2015, 91(1): 100-108. [22] Nakazawa H, Mori Yoshima, Komori M, et al. Simulational study of a dosimetric comparison between a Gamma Knife treatment plan and an intensity-modulated radiotherapy plan for skull base tumors[J]. Journal of Radiation Research, 2014, 55(3): 518-526. [23] Palmiero A N, Critchfield L, St Clair W, et al. Single-isocenter volumetric modulated arc therapy (VMAT) radiosurgery for multiple brain metastases: Potential loss of target(s) coverage due to isocenter misalignment[J]. Cureus, 2020, 12(10): e11267. |