[1] 龚宇, 党磊, 李小丁, 等. 我国2016—2020年辐射事故回顾与分析[J]. 辐射防护, 2023, 43(6): 665-670. [2] 刘新华, 李冰, 吴德强. 位置未知废放射源的搜寻[J]. 辐射防护通讯, 2002, 22(5): 11-16. [3] 姚能伟. 面向单源定位的四轮探测机器人系统[D]. 绵阳: 西南科技大学, 2023. [4] 陈爱, 陈水广, 王家玥, 等. 高精度放射源搜寻无人机辐射监测系统设计[J]. 核电子学与探测技术, 2022, 42(5): 934-939. [5] 徐航, 艾宪芸, 管弦, 等. 基于参数估计与十字定位的放射源快速搜寻方法研究[J]. 辐射防护, 2022, 42(6): 563-570. [6] 谢跃辉. 面向放射源搜寻的热点位置估计算法研究[D]. 绵阳: 西南科技大学, 2023. [7] 刘浩杰, 肖宇峰, 张华, 等. 基于改进粒子滤波的未知放射源定位方法[J]. 原子能科学技术, 2020, 54(11): 2264-2272. [8] Hite J, Mattingly J. Bayesian metropolis methods for source localization in an urban environment[J]. Radiation Physics and Chemistry, 2019, 155: 271-274. [9] 王成竹, 张佳, 沈杨, 等. 能量响应补偿法在便携式γ剂量率仪上的应用[J]. 核电子学与探测技术, 2014(12): 1443-1445, 1453. [10] 赵原, 刘立业, 李华, 等. 基于全站仪定位的辐射场测量方法研究[J]. 辐射防护, 2024, 44(4): 336-342. [11] 谭军文. 基于闪烁体探测器的γ放射源定位技术研究[D]. 衡阳: 南华大学, 2016. [12] 李岩, 刘立业, 曹勤剑, 等.一种纵, 横向视野不同的编码孔径伽玛相机的方法论述与模拟验证[J]. 辐射防护, 2022, 42(6): 548-555. [13] 魏龙, 孔令钦, 帅磊, 等. 核安全中的辐射成像方法与智能化技术[J]. 原子核物理评论, 2024, 41(1): 94-108. [14] 昂文胜, 董顺成, 杜永欢, 等. 编码孔径辐射成像定位技术[J]. 辐射研究与辐射工艺学报, 2024, 42(2): 116-124. [15] 周杨, 赵越, 张振朝, 等. 基于三NaI(Tl)晶体探测器的放射源定位研究[J]. 核技术, 2019, 42(8): 50-55. [16] Guckes A, Barzilov A, Guss P. Experimental study of directional detection of neutrons and gamma rays using an elpasolite scintillator array[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 992: 165028. [17] Willis M J, Skutnik S E, Hall H L. Detection and positioning of radioactive sources using a four-detector response algorithm[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 767: 445-452. [18] 张译文, 章志明, 李道武, 等. 基于多探测节点的放射源监测及定位方法研究[J]. 原子能科学技术, 2016, 50(4): 705-712. [19] HU Tingting, SHUAI Lei, WANG Peilin, et al. Design of data acquisition system and algorithm research for omnidirectional gamma-ray positioning equipment[J]. Chinese Physics C, 2014, 38(1): 018202. [20] FAN Peng, LYU Z, XU Tianpeng, et al. Design and development of a 3D Position-Sensitive detector for 4π view gamma imager based on Dual-Ended readout technique[C]//2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Manchester: IEEE, 2019: 1-4. [21] Ardiny H, Witwicki S, Mondada F. Autonomous exploration for radioactive hotspots localization taking account of sensor limitations[J]. Sensors, 2019, 19(2): 292. [22] Lin H I, Tzeng H J. Searching a radiological source by a mobile robot[C]//2015 International Conference on Fuzzy Theory and Its Applications (iFUZZY). Taiwan: IEEE, 2015: 1-5. [23] Agostinelli S, Allison J, Amako K, et al. Geant4—A simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303. [24] Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278. [25] Allison J, Amako K, Apostolakis J, et al. Recent developments in Geant4[J]. Nuclear Instruments and Methods in Physics Research, Section A: accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 835: 186-225. [26] LIU Haomin, ZHANG Guofeng, BAO Hujun. A survey of monocular simultaneous localization and mapping[J]. Journal of Computer-Aided Design and Compute Graphics, 2016, 28(6): 855-868. [27] ZHANG Zhengyou. Flexible camera calibration by viewing a plane from unknown orientations, in puter Vision,1999[J]. The Proceedings of the Seventh IEEE International Conference on, 1999, 1: 666-673. [28] 倪诗翔. 失控放射源搜寻机器人设计与寻源算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [29] 滕明波. 移动机器人自主搜寻放射源及模拟验证[D]. 绵阳: 西南科技大学, 2022. |