[1] De Meutter P, Camps J, Delcloo A, et al. Assessment of the announced North Korean nuclear test using long-range atmospheric transport and dispersion modelling[J]. Scientific Reports, 2017, 7(1): 8762. [2] Saunier O, Didier D, Mathieu A, et al. Atmospheric modeling and source reconstruction of radioactive Ruthenium from an undeclared major release in 2017[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(50): 24991-25000. [3] Wotawa G, DE Geer le, Denier P, et al. Atmospheric transport modelling in support of CTBT verification-Overview and basic concepts[J]. Atmospheric Environment, 2003, 37(18): 2529-2537. [4] PAN Pujing, Ungar R K. Nuclear event zero-time calculation and uncertainty evaluation[J]. Journal of Environmental Radioactivity, 2012, 106: 65-72. [5] Ulimoen M, Klein H. Localisation of atmospheric release of radioisotopes using inverse methods and footprints of receptors as sources[J]. Journal of Hazardous Materials, 2023, 451: 131156. [6] 葛宝珠, 陆芊芊, 陈学舜, 等. 放射性核素大气扩散数值模拟研究综述[J]. 环境科学学报, 2021, 41(5): 1599-1609. [7] American Geophysical Union. Lagrangian modeling of the atmosphere[M]. Hoboken: John Wiley & Sons, 2013. [8] Pisso I, Sollum E, Grythe H, et al. The lagrangian particle dispersion model FLEXPART version 10.4[J]. Geoscientific Model Development, 2019, 12(12): 4955-4997. [9] Draxler R R, Rolph G D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website (http://ready.arl.noaa.gov/HYSPLIT. php). NOAA Air Resources Laboratory[J]. Silver Spring, MD, 2010, 25(1). [10] Peckham S E. WRF/Chem version 3.3 user’s guide[DB/OL].https://repository.library.noaa.gov/view/noaa/11119. [11] Binkowski F S, Roselle S J. Models-3 community multiscale air quality(CMAQ)model aerosol component 1.Model description[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D6):4184. [12] Thykier-Nielsen S, Deme S, Mikkelsen T. Description of the atmospheric dispersion module RIMPUFF: RODOS(WG2)-TN(98)-02[R/OL].(1999-04-29).https://resy5.ites.kit.edu/RODOS/Documents/Public/Handbook/Volume3/4_2_6_RIMPUFF.pdf. [13] Allwine K J, Dabberdt W F, Simmons L L. Peer review of the CALMET/CALPUFF modeling system: No. 68-D-98-092[R]. Durham: EPA, 1998. [14] Brandt J, Mikkelsen T, Thykier-Nielsen S, et al. The Danish Rimpuff and Eulerian accidental release model (the DREAM)[J]. Physics and Chemistry of the Earth, 1996, 21(5/6): 441-444. [15] Lyons W A, Pielke R A, Cotton W R, et al. Recent applications of the Rams meteorological and the hypact dispersion models[M]. Boston: Springer, 1994: 19-26. [16] Seibert P, Frank A. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode[J]. Atmospheric Chemistry and Physics, 2004, 4(1): 51-63. [17] Mekhaimr S A, Abdel Wahab M M. Sources of uncertainty in atmospheric dispersion modeling in support of comprehensive Nuclear-Test-Ban Treaty monitoring and verification system[J]. Atmospheric Pollution Research, 2019, 10(5): 1383-1395. [18] Hutchinson M, Oh H, CHEN Wenhua. A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors[J]. Information Fusion, 2017, 36: 130-148. [19] Saunier O, Ingremeau J J, Hoffman I, et al. Methodology for the investigation of undeclared atmospheric releases of radionuclides: application to recent radionuclide detections in Northern Europe from 2019 to 2022[J]. Annals of Nuclear Energy, 2023, 192: 109907. [20] Hansen P C, O’Leary D P. The use of the L-curve in the regularization of discrete ill-posed problems[J]. SIAM Journal on Scientific Computing, 1993, 14(6): 1487-1503. [21] Seibert P. Methods for source determination in the context of the CTBT radionuclide monitoring system[C]//Informal Workshop on Meteorological Modelling in Support of CTBT Verification. Vienna: Department of Meteorology of the Agricultural University of Vienna, 2000: 4-6. [22] CHAI T, Stein A, Ngan F. Weak-constraint inverse modeling using HYSPLIT-4 Lagrangian dispersion model and Cross-Appalachian Tracer Experiment(CAPTEX)observations-effect of including model uncertainties on source term estimation[J]. Geoscientific Model Development, 2018, 11(12): 5135-5148. [23] Tichý O, mídl V, Hofman R, et al. Bayesian inverse modeling and source location of an unintended 131 I release in Europe in the fall of 2011[J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12677-12696. [24] De Meutter P, Camps J, Delcloo A, et al. Source localisation and its uncertainty quantification after the third DPRK nuclear test[J]. Scientific Reports, 2018, 8(1): 10155. [25] Dumont L B J, Bocquet M, Saunier O, et al. Quantification of uncertainties in the assessment of an atmospheric release source applied to the autumn 2017 106 Ru event[J]. Atmospheric Chemistry and Physics, 2021, 21(17): 13247-13267. [26] Dumont Le Brazidec J, Bocquet M, Saunier O, et al. MCMC methods applied to the reconstruction of the autumn 2017 Ruthenium-106 atmospheric contamination source[J]. Atmospheric Environment: X, 2020, 6: 100071. [27] Pieter De M, Hoffman I, Ungar K. On the model uncertainties in Bayesian source reconstruction using an ensemble of weather predictions,the emission inverse modelling system FREAR v1.0,and the Lagrangian transport and dispersion model Flexpart v9.0.2[J]. Geoscientific Model Development, 2021, 14(3): 1237-1252. [28] Lucas D D, Simpson M, Cameron-Smith P, et al. Bayesian inverse modeling of the atmospheric transport and emissions of a controlled tracer release from a nuclear power plant[J]. Atmospheric Chemistry and Physics, 2017, 17(22): 13521-13543. |