[1] 中国原子能科学研究院.环境地表γ辐射剂量率测定规范:GB/T 14583—1993[S].北京:中国标准出版社,1993. [2] 朱耀明,林明贵.宁德核电厂外围环境γ辐射连续监测系统[J].海峡科学,2015,102(6):75-78+92. [3] 沙连茂.辐射环境监测数据合理性评价中的问题探讨[J].环境监控与预警,2017,9(3):1-10. [4] 陈爱,周睿东,陈文涛,等.降雨对连续γ辐射测量影响的数值拟合[J]. 辐射防护, 2017,37(5):361-368. [5] 罗敦烨,沙向东,上官志洪,等.环境γ辐射剂量率连续监测数据影响因素和特征分析 [J]. 辐射防护, 2018,38(4):308-318. LUO Dunye, SHA Xiangdong, SHANGGUAN Zhihong, et al.Study on influence factors and characteristics of continuousmonitoring data of environmental γ dose rate[J]. Radiation Protection,2018,38(4):308-318. [6] Bossew P, Cinelli G, Hernández-Ceballos M, et al. Estimating the terrestrial gamma dose rate by decomposition of the ambient doseequivalent rate [J]. Journal of Environmental Radioactivity, 2016,166:296-308. [7] 王蕾,王晓芬,赵顺平.核电基地周围辐射环境监督性监测概况[J].辐射防护,2019,39(2):118-123. WANG Lei, WANG Xiaofen, ZHAO Shunping.Study on influence factors and characteristics of continuousmonitoring data of environmental γ dose rate[J].Radiation Protection,2019,39(2):118-123. [8] FENG W, ZHANG Y, LI Y, et al. Spatial distribution, risk assessment and influence factors of terrestrial gamma radiation dose in China [J].Journal of Environmental Radioactivity, 2020,222:106325. [9] 王明明,张晓妍.辐射环境监测领域面向大数据的应急监测数据管理与利用的探讨[J].环境保护与循环经济,2016,36(4):60-62. [10] Sangiorgi M, Ceballos M A H, Iurlaro G, et al.30 years of European Commission Radioactivity Environmental Monitoring data bank (REMdb)—An open door to boost environmental radioactivity research[J]. Earth System Science Data, 2019(11):589-601. [11] US DOE.US DOE(Department of Energy) to fund nuclear data research[EB/OL]. (2019-04-25)[2023-11-15].https://www.world-nuclear-news.org/Articles/US-DOE-to-fund-nuclear-data-research.2019. [12] James Douglas Hamilton.Time series analysis[M]. Princeton: Princeton University Press,1994:43-64. [13] Mejia J, Avelar-Sosa L, Mederos B, et al. Prediction of time series using an analysis filter bank of LSTM units[J]. Computers & Industrial Engineering, 2021, 157: 107371. [14] Farhi N, Kohen E, Mamane H, et al. Prediction of wastewater treatment quality using LSTM neural network[J]. Environmental Technology & Innovation, 2021, 23: 101632. [15] 袁华,陈泽濠.基于时间卷积神经网络的短时交通流预测算法[J].华南理工大学学报(自然科学版),2020,48(11):107-113+122. [16] 张雪薇,韩震.基于ConvGRU深度学习网络模型的海表面温度预测[J].大连海洋大学学报,2022,37(3):531-538. [17] 胡丹,孟新,路帅,等.一种并行LSTM-FCN模型在船舶航迹预测中的应用[J].控制与决策,2022,37(8):1955-1961. [18] David H S.Singular spectrum analysis for time series with missing data[J]. Geophysical Research Letters, 2011,28(16): 3187-3190. [19] 李嘉文,盛德仁,李蔚.基于分解去噪和LSSVM的短期风速预测[J].能源工程,2021(4):17-24. [20] 吴坚,项颂,阎诚,等.基于奇异谱分析的超短期风电功率多步预测[J].可再生能源,2021,39(11):1548-1555. [21] Janik M, Bossew P, Kurihara O. Machine learning methods as a tool to analyse incomplete or irregularly sampled radon time series data[J]. Science of the Total Environment,2018,630:1155-1167. [22] 朱武峰,王廷银,林明贵,等.基于Gradient Boosting算法的ERMS辐射数据预测[J].计算机系统应用,2019,28(11):37-44. ZHU Wufeng,WANG Tingyin,LIN Minggui, et al.Prediction of ERMS radiation data based on Gradient Boosting algorithm[J].Computer System Application,2019,28(11):37-44. [23] 林武辉,王诗玥,黄亚萍,等.大气中γ辐射空气吸收剂量率的波动机制[J].中国环境科学,2022,42(3):1097-1103. LIN Wuhui,WANG Shiyue,HUANG Yaping,et al.Mechanism of the variable γ radiation air absorbed dose rate in the atmosphere[J].China Environmental Science,2022,42(3):1097-1103. |