辐射防护 ›› 2023, Vol. 43 ›› Issue (6): 678-686.
张婷1, 战景明1, 周小林1, 张晖2, 张艳娜1
收稿日期:
2022-12-11
出版日期:
2023-11-20
发布日期:
2023-12-25
通讯作者:
战景明。E-mail:zhanjingming@163.com
作者简介:
张婷(1991—),女,2015年毕业于山西医科大学预防医学专业,2018年毕业于山西医科大学劳动卫生与环境卫生学专业,获硕士学位,助理研究员。E-mail: zhangtzhangtzhang@163.com
基金资助:
ZHANG Ting1, ZHAN Jingming1, ZHOU Xiaolin1, ZHANG Hui2, ZHANG Yanna1
Received:
2022-12-11
Online:
2023-11-20
Published:
2023-12-25
摘要: 随着对铀的不断研究,越来越多的毒理学证据表明铀不仅对肾脏和骨骼产生作用,铀的暴露会出现抑郁、忧虑、运动和语言障碍等神经系统的行为异常现象。铀的神经毒性表现的更为隐匿,但造成的远期毒性效应不容忽视。本文从动物模型的实验研究和人群流行病学调查两个方面介绍了铀的神经毒性,并从炎症和氧化应激、细胞凋亡和坏死、细胞死亡或神经元信号传导和细胞内信号转导、中枢神经系统的表观遗传学机制四个方面对铀(含贫铀)的神经毒性及可能的作用机制进行系统综述,为铀的毒性研究提供新的思路,以更好的保障相关从业者的健康。
中图分类号:
张婷, 战景明, 周小林, 张晖, 张艳娜. 铀的神经毒性及作用机制研究进展[J]. 辐射防护, 2023, 43(6): 678-686.
ZHANG Ting, ZHAN Jingming, ZHOU Xiaolin, ZHANG Hui, ZHANG Yanna. Research progress on the neurotoxicity of uranium and related functional mechanism[J]. RADIATION PROTECTION, 2023, 43(6): 678-686.
[1] Olszewski, Grzegorz, Skwarzec, et al. Uranium(U-234, U-235 and U-238) contamination of the environment surrounding phosphogypsum waste heap in Wislinka(northern Poland)[J]. Journal of Environmental Radioactivity, 2015, 146(Aug.):56-66. [2] Fairlie, Ian. Depleted uranium: properties, military use and health risks[J]. Medicine Conflict & Survival, 2009, 25(1):41-64. [3] Borrmann R. The use of depleted uranium ammunition under contemporary international law: is there a need for a treaty-based ban on DU weapons?[J] Med Confl Surviv, 2010, 26(4):268-280. doi: 10.1080/13623699.2010.535277. [4] Royal Society Working Group on the Health Hazards of Depleted Uranium Munitions. The health effects of depleted uranium munitions: a summary[J]. J Radiol Prot, 2002, 22(2):131-139. doi: 10.1088/0952-4746/22/2/301. [5] Fattal E, Tsapis N, Phan G. Novel drug delivery systems for actinides(uranium and plutonium) decontamination agents[J]. Adv Drug Deliv Rev, 2015, 90(1):40-54. [6] Yue Y C, Li M H, Wang H B, et al. The toxicological mechanisms and detoxification of depleted uranium exposure[J]. Environmental Health & Preventive Medicine, 2018, 23(1):18. [7] Fukuda S, Ikeda M, Chiba M, et al. Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium[J]. Radiation Protection Dosimetry, 2006, 118(3):307-314. [8] Poisson C, Stefani J, Manens L, et al. Chronic uranium exposure dose-dependently induces glutathione in rats without any nephrotoxicity[J]. Free Radical Research, 2014, 48(10):1218-1231. [9] FDS Júnior, Tavella R A, Fernandes C, et al. Genetic damage in coal and uranium miners[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2021, 866:503348. [10] Dinocourt C, Legrand M, Dublineau I, Lestaevel P. The neurotoxicology of uranium. Toxicology[J]. 2015, 4:337:58-71. doi: 10.1016/j.tox.2015.08.004. Epub 2015 Aug 12. [11] Wang S, Ran Y, Lu B, et al. A Review of Uranium-induced reproductive toxicity[J]. Biol Trace Elem Res, 2020, 196(1):204-213. doi: 10.1007/s12011-019-01920-2. Epub 2019 Oct 16. [12] Brugge D, Buchner V. Health effects of uranium: new research findings[J]. Rev Environ Health, 2011, 26(4):231-249. [13] 陈中红,查明. 铀曲线在沉积盆地古环境反演中的应用[J]. 石油大学学报:自然科学版, 2004, 28(6):16-20. [14] Miryana Hémadi, Ha-Duong N T, Plantevin S, et al. Can uranium follow the iron-acquisition pathway? Interaction of uranyl-loaded transferrin with receptor 1[J]. Journal of Biological Inorganic Chemistry Jbic A Publication of the Society of Biological Inorganic Chemistry, 2010, 15(4):497. [15] Keith S, Faroon O, Roney N, et al. Potential for human exposure-toxicological profile for uranium-NCBI Bookshelf[R]. Agency for Toxic Substances & Disease Registry, 2013. [16] 万吨. 铀酰离子与细胞色素b_5相互作用的理论和实验研究[D]. 衡阳:南华大学, 2012. [17] 陆美玲. 贫铀对秀丽线虫的慢性毒性和作用机制研究[D]. 桂林:广西师范大学, 2020. [18] Berke H, Rothstein A. Amino aciduria in uranium poisoning; the response to different amounts of uranium given intravenously and by inhalation[J]. Journal of Pharmacology & Experimental Therapeutics, 1949, 96(2):198-208. [19] Monleau M, Bussy C, Lestaevel P, et al. Bioaccumulation and behavioural effects of depleted uranium in rats exposed to repeated inhalations[J]. Neuroscience Letters, 2005, 390(1):31-36. [20] Abou-Donia M B, Dechkovskaia A M, Goldstein L B, et al. Uranyl acetate-induced sensorimotor deficit and increased nitric oxide generation in the central nervous system in rats[J]. Pharmacology Biochemistry & Behavior, 2002, 72(4):881-890. [21] Bellés M, Albina M L, Linares V, et al. Combined action of uranium and stress in the rat[J]. I Behavioral Effects Toxicol Lett,2005, 158(3):176-185. [22] Briner W, Murray J. Effects of short-term and long-term depleted uranium exposure on open-field behavior and brain lipid oxidation in rats[J]. Neurotoxicology & Teratology, 2005, 27(1):135-144. [23] Barber D S, Hancock S K, Mcnally A M, et al. Neurological effects of acute uranium exposure with and without stress[J]. NeuroToxicology, 2007, 28(6):1110-1119. [24] Houpert P, Lestaevel P, Bussy C, et al. Enriched but not depleted uranium affects central nervous system in long-term exposed rat[J]. Neuro Toxicology, 2006, 26(6):1015-1020. [25] Houpert P, Bizot J C, Bussy C, et al. Comparison of the effects of enriched uranium and 137-cesium on the behaviour of rats after chronic exposure[J]. International Journal of Radiation Biology, 2007, 83(2):99-104. [26] Lestaevel P, Romero E, Dhieux B, et al. Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats[J]. Toxicology, 2009, 258(1):1-9. [27] Lestaevel P, Airault F, Racine R, et al. Influence of environmental enrichment and depleted uranium on behaviour, cholesterol and acetylcholine in apolipoprotein E-deficient mice[J]. Journal of Molecular Neuroscience, 2014, 53(3):469-479. [28] 朱振坤, 李金泉, 曾燕. 重金属暴露与阿尔茨海默病发生发展关系的研究进展[J]. 华中科技大学学报(医学版), 2020, 49(06):770-776+783. [29] Stepanichev M Y, Moiseeva Y V, Lazareva N A, et al. Single intracerebroventricular administration of amyloid-beta(25-35) peptide induces impairment in short-term rather than long-term memory in rats[J]. Brain Research Bulletin, 2003, 61, 197-205. [30] Grandjean P, Landrigan P J. Neurobehavioural effects of developmental toxicity[J]. The Lancet Neurology, 2014, 13(3):330-338. [31] Ng C Y, Pereira S, Cheng S H, et al. Combined effects of alpha particles and depleted uranium on zebrafish(Danio rerio) embryos[J]. Journal of Radiation Research, 2016, 57(4): 343-355. [32] Houpert P, Frelon S, Lestaevel P, et al. Parental exposure to enriched uranium induced delayed hyperactivity in rat offspring[J]. Neurotoxicology, 2007, 28(1):108-113. [33] Albina M L, Bellés M, Linares V, et al. Restraint stress does not enhance the uranium-induced developmental and behavioral effects in the offspring of uranium-exposed male rats[J]. Toxicology, 2005, 215(1-2):69-79. [34] Lestaevel P, Bensoussan H. Cerebral cortex and hippocampus respond differently after post-natal exposure to uranium[J]. Journal of Toxicological Sciences, 2013, 38(5):803-811. [35] Lestaevel P, Dhieux B, Delissen O, et al. Uranium modifies or not behavior and antioxidant status in the hippocampus of rats exposed since birth[J]. Journal of Toxicological Sciences, 2015, 40(1):99-107. [36] Legrand M, Elie C, Stefani J, et al.Cell proliferation and cell death are disturbed during prenatal and postnatal brain development after uranium exposure[J]. Neurotoxicology, 2016, 52:34-45. [37] Howland J W. Comprehensive summary of the pharmacology and toxicology of uranium compounds; studies on human exposures to uranium compounds[J]. Atomic Energy in Biophysics Biology & Medicine, 1948, 1(5):174. [38] Rage E, Caër-Lorho S, Drubay D, et al. Mortality analyses in the updated French cohort of uranium miners(1946-2007)[J]. Int Arch Occup Environ Health, 2015,88(6):717-730. doi: 10.1007/s00420-014-0998-6. [39] Janulewicz P A, Krengel M H, Maule A, et al. Neuropsychological characteristics of Gulf War illness: A meta-analysis[J]. PLoS One. 2017, 12(5):e0177121. doi: 10.1371/journal.pone.0177121. [40] Mawson A R, Croft A M. Gulf War Illness: unifying hypothesis for a continuing health problem[J]. Int J Environ Res Public Health, 2019, 16(1):111. doi: 10.3390/ijerph16010111. [41] Zundel C G, Krengel M H, Heeren T, et al. Rates of chronic medical conditions in 1991 Gulf War Veterans compared to the general population[J]. International Journal of Environmental Research and Public Health, 2019, 16(6):949. doi: 10.3390/ijerph16060949. [42] Chao L L, Zhang Y, Buckley S. Effects of low-level sarin and cyclosarin exposure on white matter integrity in Gulf War Veterans[J]. Neurotoxicology, 2015, 48:239-248. [43] Chao L L, Zhang Y. Effects of low-level sarin and cyclosarin exposure on hippocampal microstructure in Gulf War Veterans[J]. Neurotoxicol Teratol,2018, 68:36-46. doi: 10.1016/j.ntt.2018.05.001. [44] Rayhan R U, Stevens B W, Timbol C R, et al. Increased brain white matter axial diffusivity associated with fatigue, pain and hyperalgesia in Gulf War Illness[J]. Plos One, 2013, 8(3):e58493. [45] McDiarmid M A, Hooper F J, Squibb K, et al. Health effects and biological monitoring results of Gulf War veterans exposed to depleted uranium[J]. Military Medicine, 2002, 167(Suppl 2):123-124. [46] Mcdiarmid M A, Gaitens J M, Hines S, et al. The Gulf War depleted uranium cohort at 20 years: bioassay results and novel approaches to fragment surveillance[J]. Health Physics, 2013, 104(4):347-361. [47] Goasguen J, Lapresle J, Ribot C, et al. Chronic neurological syndrome resulting from intoxication with metallic uranium(author’s transl)][J]. La Nouvelle Presse Médicale, 1982, 11(2):119. [48] Linares V,Sánchez D J, Bellés M, et al. Pro-oxidant effects in the brain of rats concurrently exposed to uranium and stress[J]. Toxicology, 2007, 236(1-2):82-91. [49] Pourahmad J, Ghashang M, Ettehadi H A, et al. A search for cellular and molecular mechanisms involved in depleted uranium(DU) toxicity[J]. Environmental Toxicology, 2010, 21(4):349-354. [50] Daraie B, Pourahmad J, Hamidi-Pour N, et al. Uranyl acetate induces oxidative stress and mitochondrial membrane potential collapse in the human dermal fibroblast primary cells[J]. Iranian Journal of Pharmaceutical Research(IJPR), 2012, 11(2):495-501. [51] Shaki F, Hosseini M J, Ghazi-Khansari M, et al. Depleted uranium induces disruption of energy homeostasis and oxidative stress in isolated rat brain mitochondria[J]. Metallomics Integrated Biometal Science, 2013, 5(6):736-744. [52] Bourdineaud J P, Rossignol R, Brèthes D. Zebrafish: A model animal for analyzing the impact of environmental pollutants on muscle and brain mitochondrial bioenergetics[J]. International Journal of Biochemistry & Cell Biology, 2013, 45(1):16-22. [53] Zhuo M. Ionotropic glutamate receptors contribute to pain transmission and chronic pain[J]. Neuropharmacology, 2017, 112(Pt A):228-234. [54] Latremoliere A , Woolf C J . Central sensitization: a generator of pain hypersensitivity by central neural plasticity[J]. Journal of Pain, 2009, 10(9):895-926. [55] Hoffmann J, Charles A. Glutamate and its receptors as therapeutic targets for migraine[J]. Neurotherapeutics, 2018, 15(2): 361-370. [56] Zarcone D, Corbetta S. Shared mechanisms of epilepsy, migraine and affective disorders[J]. Neurological Sciences, 2017, 38(Suppl 1):73-76. [57] Rahn K A. Inhibition of glutamate carboxypeptidase II(GCPII) activity as a treatment for cognitive impairment in multiple sclerosis[J]. Proc Natl Acad Sci U.S.A., 2012, 109(49):20101-20106. [58] Vietti K R N, Lasley S M. Stimulus-evoked glutamate release is diminished by acute exposure to uranium in vitro[J]. Neurotoxicology and Teratology, 2007, 29(6):607-612. [59] Drever B D, Riedel G, Platt B. The cholinergic system and hippocampal plasticity[J]. Behavioural Brain Research, 2011, 10;221(2):505-514. doi: 10.1016/j.bbr.2010.11.037. Epub 2010 Dec 2. [60] Steriade M. Acetylcholine systems and rhythmic activities during the waking-sleep cycle[J]. Prog Brain Res, 2004, 145:179-196. doi: 10.1016/S0079-6123(03)45013-9. PMID: 14650916. [61] Gerber D J, Sotnikova T D, Gainetdinov R R, et al. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(26):15312-15317. [62] Bensoussan H, Grancolas L, Dhieux-Lestaevel B, et al. Heavy metal uranium affects the brain cholinergic system in rat following sub-chronic and chronic exposure[J]. Toxicology, 2009, 261(1-2):59-67. [63] Bussy C, Lestaevel P, Dhieux B, et al. Chronic ingestion of uranyl nitrate perturbs acetylcholinesterase activity and monoamine metabolism in male rat brain[J]. NeuroToxicology, 2006, 27:245-252. [64] Barillet, Sabrina, Adam, et al. Bioaccumulation, oxidative stress, and neurotoxicity in Danio rerio exposed to different isotopic compositions of uranium[J]. Environ Toxicol Chem, 2007, 26(3): 497-505. [65] Céline Dinocourt. Uranium and the central nervous system: what should we learn from recent new tools and findings?[R]. Advances in Neurobiology, 2017. [66] Rudenko A, Tsai L H. Epigenetic regulation in memory and cognitive disorders[J]. Neuroscience, 2014, 264:51-63. [67] Elmhiri G, Gloaguen C, Kereselidze D, et al. Multigenerational effects of chronic low-dose natural uranium contamination: Epigenetic inheritance of methylation signature[J]. Toxicology Letters, 2016, 259:S114. [68] Gombeau K, Pereira S, Ravanat J L, et al. Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish[J]. J Environ Radioact, 2016, 154:25-33. [69] Hon G C,Hawkins R D,Caballero O L, et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer[J]. Genome Research, 2012, 22(2):246. |
[1] | 武云云, 宋延超, 张庆召, 崔宏星, 侯长松. 2019—2020年我国部分非铀矿山氡浓度监测结果与分析[J]. 辐射防护, 2023, 43(S1): 61-66. |
[2] | 武旭阳, 孙娟, 连国玺, 宋旺旺, 安毅夫, 高扬. 地浸采铀钻孔场区氡致周边辐射环境影响研究[J]. 辐射防护, 2023, 43(6): 611-619. |
[3] | 陈斌, 韦应靖, 安世峰, 王雨青. 铀燃料芯块表面及操作人员弱贯穿辐射剂量监测[J]. 辐射防护, 2023, 43(5): 473-477. |
[4] | 梁铠淇, 洪昌寿, 陈志斌, 赵天吉, 汪弘, 李向阳, 刘永. 铀尾矿库氡析出机理及其影响因素研究进展[J]. 辐射防护, 2023, 43(2): 97-113. |
[5] | 张帅, 哈日巴拉, 格日勒满达呼, 许潇, 孙智超, 包玉龙, 王成国. 内蒙古巴彦乌拉铀矿周边井水铀含量水平调查[J]. 辐射防护, 2023, 43(2): 137-144. |
[6] | 庄大杰, 龚道坤, 连一仁, 陈磊, 王智鹏, 王鹏毅, 孙树堂, 孙洪超, 李国强, 张建岗. 3 m3天然六氟化铀运输货包满载及卸载后的辐射水平分析[J]. 辐射防护, 2022, 42(4): 333-338. |
[7] | 李周, 李鹏翔, 杨海兰, 马旭媛, 林海鹏, 高泽全, 韩玉虎, 任晓娜. 用UTEVA树脂分离铀-α谱仪测量铀同位素的分析方法[J]. 辐射防护, 2022, 42(2): 119-123. |
[8] | 王哲, 朱建林, 张怀胜, 张春艳, 李栋. 赣杭构造带某铀矿区地下水中铀的存在形式研究[J]. 辐射防护, 2022, 42(1): 19-23. |
[9] | 马文财, 刘延彰, 赵瑛. 铀纯化转化生产过程中作业人员的β外照射防护研究[J]. 辐射防护, 2021, 41(S1): 26-28. |
[10] | 贾林胜, 张建岗, 杨亚鹏, 王任泽, 冯宗洋, 王宁, 梁博宁. 基于事故进程的氟化铀酰溶液临界裂变次数估算方法[J]. 辐射防护, 2021, 41(S1): 50-54. |
[11] | 潘玉婷, 曹芳芳, 陆宏, 李多宏, 洪哲. 六氟化铀安全运输相关要求及我国运输实践中存在的问题探讨[J]. 辐射防护, 2021, 41(S1): 113-116. |
[12] | 张晓燕, 张桂芬, 郝悦, 孔淮, 曹昆武. 过氯乙烯滤膜采样测定空气和废气中铀的分析方法研究[J]. 辐射防护, 2021, 41(5): 410-414. |
[13] | 韩春彩, 孔凡璠, 陈亮平, 孟庆森, 廖运璇. 含铀氢氟酸再利用辐射影响研究[J]. 辐射防护, 2021, 41(3): 237-241. |
[14] | 李周, 张静, 马旭媛, 李鹏翔, 师琦琦, 韩玉虎, 任晓娜. 基于还原体系的气溶胶中铀同位素分析方法研究[J]. 辐射防护, 2021, 41(3): 223-228. |
[15] | 冀东, 刘颖, 苏晓书, 李元岗, 周炬. 铀煤叠置矿区对煤矿开采环境氡影响的探讨[J]. 辐射防护, 2021, 41(2): 138-144. |
|