辐射防护 ›› 2023, Vol. 43 ›› Issue (5): 422-430.
蔺一博, 骆志平, 庞洪超, 汪传高, 陈然
收稿日期:
2023-06-14
出版日期:
2023-09-20
发布日期:
2023-11-06
作者简介:
蔺一博(1999—),男,2021年本科毕业于南华大学核工程与和技术专业,目前就读于中国原子能科学研究院,硕士研究生。E-mail:linember@outlook.com
LIN Yibo, LUO Zhiping, PANG Hongchao, WANG Chuangao, CHEN Ran
Received:
2023-06-14
Online:
2023-09-20
Published:
2023-11-06
摘要: 乏燃料后处理厂在后处理过程中会产生大量放射性气体,对后处理厂气态流出物中I-129的主要形态展开调研,总结了目前放射性碘所用的监测方法,通过对比其优缺点,分析适用于后处理厂气态流出物中I-129的在线监测方法。并得出建立后处理厂气态流出物中I-129在线监测是可行的结论,可以尝试建立基于ICP-MS的后处理厂气态流出物中I-129在线监测技术,对后处理厂气态流出物中的气态碘分子进行监测,从而实现对后处理厂气态流出物中I-129的实时监测。
中图分类号:
蔺一博, 骆志平, 庞洪超, 汪传高, 陈然. 后处理厂气态流出物中I-129监测技术现状研究[J]. 辐射防护, 2023, 43(5): 422-430.
LIN Yibo, LUO Zhiping, PANG Hongchao, WANG Chuangao, CHEN Ran. Study on the status of I-129 monitoring technology for gaseous effluent in reprocessing plant[J]. RADIATION PROTECTION, 2023, 43(5): 422-430.
[1] 米宇豪,以恒冠,廖运璇,等.后处理设施气载流出物中129I的监测和监管[J]. 核科学与工程,2022,42(1):207-214. [2] IAEA. Treatment of radioactive gaseous waste:IAEA-TECDOC(1744)[R]. IAEA,2014:1-66. [3] Sakurai,Tsutomu,Komatsu,et al. Behavior of iodine in the dissolution of spent nuclear fuels:NUREG(CP-0153)[C]//The 24th Doe/nrc Nuclear Air Cleaning and Treatment Conference,1996:550-562. [4] Mineo H. Study on gaseous effluent treatment for dissolution step of spent nuclear fuel reprocessing[R]. WM 02 Conference,2002,(24-28):1-9. [5] Furrer J,Wilhelm J,Jannakos K.Aerosol and iodine removal system for the dissolver off gas in a large fuel reprocessing plant[C]//In Proceedings of the 15th DOE/NRC Nuclear Air Cleaning Conference,1979,15(1):494-511. [6] Goles R,Brauer F,Hamilton D,et al.Nuclear waste vitrification effluent[C]//In Proceedings of the 16th DOE/ NRC Nuclear Air Cleaning Conference,1981:891-910. [7] Henrich E,Huefner R,Sahm A. Improved procedures for efficient iodine removal from fuel solutions in reprocessing plants[R]. Management of Gaseous Wastes from Nuclear Facilities,1980,IAEA-SM-245(16):139-156. [8] Auchapt P,Patarin L,Tarnero M. Meeting on fuel reprocessing and waste management, American nuclear society[C]. American Society for Materials,La Grange Park, IL, USA, 1984:2-3. [9] Leudet A,Miquel P,Goumondy P,et al.Balance and behavior of gaseous radionuclides released during initial PWR fuel reprocessing operations[C]//In Proceedings of the 17th DOE Nuclear Air Cleaning Conference,1982,1(1):39-181. [10] Herrmann F,Motoi V,Herrmann B,et al. Minimizing of iodine-129 release at the Karlsruhe reprocessing plant WAK[C]//In Proceedings of the 22nd DOE/NRC Nuclear Air Cleaning and Treatment Conference,1993,24(27):75-90. [11] Weinlaender W,Huppert K,Weishaupt M.Twenty years of WAK reprocessing pilot plant operation[C]//Proceedings of the Third International Conference on Nuclear Fuel Reprocessing and Waste Management,1991,91(1):55-63. [12] Sakurai T,Takahashi A,Ishikawa N,et al. Study on the expulsion of iodine from spent-fuel solutions[C]//Proceedings of the 23rd DOE/NRC Nuclear Air Cleaning and Treatment Conference, 1994,335(1):2-89. [13] Walton S L,Rodger A. The removal of iodine from reprocessing plant effluents[J]. Reactor and Fuel Processing Technology,1969,12(2):173-182. [14] Burger L L. Fission product iodine during early Hanford-Site operations: its production and behavior during fuel processing, off-gas treatment and release to the atmosphere[R]. United States: N. P., 1991. doi:10.2172/5611520. [15] Hebel G W. Management modes of Iodine-129[J]. Radioactive Waste Management,1981,0275-7273(7):1-310. [16] Kantelo M V,Bauer R L,Marter W L,et al. Radioiodine in the savannah river site environment[R]. Westinghouse Savannah River Company,1990,WSRC-RP-90-424-2(3):29-73. [17] Bower J R,Buckham J A. Control of fission product activity during short cooled fuel processing connected with the ICPP Rala Process[J]. ICPP,1970,115(1):1-5. [18] U S. DOE. Idaho national engineering laboratory[R]. United States Department of Energ,1977,ERDA-1536(2):1-76. [19] Wichner R P,John-Paul Renier,A. Iulian apostoaei. atmospheric source terms for the Idaho chemical processing plant[R]. ICPP Source Terms,2005,1(1):31-42. [20] Magno,Paul J,Reavey,et al. Iodine-129 in the environment around a nuclear fuel reprocessing plant[J]. Journal of Environmental Radioactivity,1972,72(5):1-34. [21] Hebel G.W. Management modes of iodine-129[R]. Specialists’ Meeting on Radioiodine Management,1981,7(Radioactive Waste Management 0275-7273):1-68. [22] IAEA. Control of iodine in the nuclear industry techncal report series No. 148[R]. Report of a Panel on the Control of Iodine and other Constituents of Airborne Radioactive Wastes Held in Vienna,October 19-23,1973,10(148):1-112. [23] Hudson P I,Buckley C P. Aerial and liquid effluent treatment in BNFL’S Thermal oxide reprocessing plant (THORP) JAERI-Conf-003.[C]//Proceedings of the First NUCEF International Symposium,1995, NUCEF95(1):155-176. [24] Soelberg,Nick R,Garnet,et al. Radioactive iodine and krypton control for nuclear fuel reprocessing facilities[J]. Science and Technology of Nuclear Installations,2013,(30):1-12. [25] NEAOECD Nuclear energy agency. State of the art report on the progress of the nuclear fuel cycle chemistry[J]. Nuclear Science,2018,7267(1):1-299. [26] Soundray D,Poncelet F J,Hugelmann D,et al. Head-end process technology for the new reprocessing plants in France and Japan[C]//International Conference on Nuclear Fuel Reprocessing and Waste Management,1991,28(8):784-788. [27] Siminnet,Jacques. The minimization of radioactive releases from the La Hague plants[C]//Proceedings of the First NUCEF International Symposium,1995,96(003):177-193. [28] Herrmann F J,Herrmann B,D Kuhn K,et al. Control of radio-iodine at the German reprocessing plant WAK during operation and after shutdown[C]//24th DOE/NRC Nuclear Air Cleaning and Treatment Conference,1996,24(10):618-627. [29] IAEA. Treatment conditioning and disposal of I-129[R]. IAEA,1987,276:1-84. [30] Fukushima M,Miyahara K,Matsumoto K.Iodine removal in the vessel off-gas in the Tokai reprocessing plant[R]. IAEA,1982,72(25):327-347. [31] Kikuchi K,Komori Y,Takeda K. Experience of iodine removal in Tokai reprocessing plant[C]//18th DOE Nuclear Air Borne Waste Management and Cleaning Conference,1985,840806(2):451-461. [32] Anzai K,Keta S,Kano M,et al. Radioactive effluent releases from Rokkasho reprocessing plant gaseous effluent[C]//International Congress of the International Radiation Protection Association (IRPA):Strengthening Radiation Protection Worldwide,2008,(INIS-AR-E-015):1-7. [33] 曹鑫,侯学锋,李鑫,等. 乏燃料后处理工艺气体中放射性碘的净化技术[J]. 产业与科技论坛,2020,19(4):43-47. [34] 张彩虹,宋海龙,任晓娜. 核设施液态流出物中I-129的测定[J]. 核化学与放射化学,2002,24(4):210-213. [35] SuáRez J A,Espartero A G,RodríGuez M. Radiochemical analysis of 129I in radioactive waste streams[J]. Nuclear Instruments & Methods in Physics Research,1996,369(2-3):407-410. [36] Bouisset P,Lefèvre O,Cagnat X,et al. Direct gamma-X spectrometry measurement of 129I in environmental samples using experimental self-absorption corrections[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,1999,437(1):114-127. [37] Jabbar T, Wallner G, Steier R.A review on 129I analysis in air[J]. Journal of Environmental Radioactivity, 2013,126:45-54. [38] Kim J, Kim J Y, Bae S E, et al.Review of the development in determination of 129I auount and isotope ratio of 129I/127I using mass spectrometric measurements[J]. Microchemical Journal,2021,169:106476. [39] Goles R W,Fukuda R C,Cole M W,et al. Detection of iodine-129 by laser-induced fluorescence spectrometry[J]. Analytical Chemistry,1981,53(6):776-778. [40] XU S,ZHANG L Y,et al. Speciation of radiocesium and radioiodine in aerosols from Tsukuba after the Fukushima nuclear accident[J]. Environ. Radioact,2016,155-156(38-45):1017-1024. [41] YANG G,Tazoe H,Yamada M. Can 129I track 135Cs,236U,239Pu,and 240Pu apart from 131I in soil samples from Fukushima Prefecture[J]. Scientific Report,2017,7(1):1-7. [42] Maxwell B.Analyte:Iodine.Matrix:Urine. Method:Inductively Coupled Plasma-Mass Spectrometry(ICP-MS)[J]. Laboratory Procedure Manual,2001:10-16. [43] Jian Zheng,Takata H,Tagami K,et al. Rapid determination of total iodine in Japanese coastal seawater using SF-ICP-MS[J]. Microchemical Journal,2012,100(1):42-47. [44] Hsieh Y,Wang T,Jian L,et al. An improved analytical method for iodine-129 determination in low-level radioactive waste[J]. Radiochimica Acta,2014,102(1):1137-1142. [45] 中国原子能科学研究院. 核设施流出物监测的一般规定:GB 11217—1989 [S]. 北京:中国标准出版社,1990. [46] Pang Xiaobing,Carpenter L J,Alastair C,et al. Microfluidic derivatisation technique for determination of gaseous molecular iodine with GC–MS[J]. Talanta,2015,137:214-219. [47] Ogata Y,Yamasaki T,Hanafusa R. High sensitive airborne radioiodine monitor[J]. Applied Radiation and Isotopes,2013,81:119-122. [48] IEEE.Specification and performance of on-site instrumentation for continuously monitoring radioactivity in effluents: ANSI N42.18-2004[S]. Institute of Electrical and Electronics Engineers,2004,42(18):1-23. [49] Kireev S V,Shnyrev S L,Simanovsky I G,et al. A laser-induced fluorescence method for detecting iodine-129 in the atmosphere using a frequency-doubled neodymium laser[J]. Laser Physics,2013,23(10):1-6. [50] Bouisset P,LefèVre O,Cagnat X,et al. Direct gamma-X spectrometry measurement of 129I in environmental samples using experimental self-absorption corrections[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,1999,437(1):114-127. [51] Kireev S V,Shnyrev S L,Suganeev S V. Remote monitoring of 129 I and 127 I isotopes in the atmosphere using the laser-induced fluorescence method[J]. Laser Physics,2016,26(9):1-4. [52] Kim J,Kim J Y,Bae S E,et al. Review of the development in determination of 129I amount and the isotope ratio of 129I/127I using mass spectrometric measurements[J]. Microchemical Journal,2021(169):1-9. |
[1] | 杨亚鹏, 张建岗, 冯宗洋, 贾林胜, 梁博宁, 王宁, 徐潇潇. 乏燃料后处理厂核应急评价与决策支持系统设计[J]. 辐射防护, 2023, 43(4): 353-359. |
[2] | 尹旺明, 尤成懋, 梅翔杰, 周克波. 核电厂气态流出物监测样品分析中的核素衰变校正应用探讨[J]. 辐射防护, 2023, 43(1): 55-63. |
[3] | 郑金阁, 程卫亚, 郭浩城, 刘伟富, 王晨潇, 郝桂珍, 赵宇伦, 陈凌. 应用CFD方法研究雷诺数对烟囱气体混合均匀性影响[J]. 辐射防护, 2022, 42(5): 411-417. |
[4] | 初泉丽, 张亮, 李多宏, 张天宝, 田川, 何佳霖, 武朝辉. 乏燃料后处理厂核材料衡算与控制国际经验及关键技术启示[J]. 辐射防护, 2021, 41(S1): 117-121. |
[5] | 张晓燕, 张桂芬, 郝悦, 孔淮, 曹昆武. 过氯乙烯滤膜采样测定空气和废气中铀的分析方法研究[J]. 辐射防护, 2021, 41(5): 410-414. |
[6] | 吴昊, 汪传高, 郑国文, 庞洪超, 骆志平, 陈然, 陈凌, 王仲文. 气溶胶直接进样装置样品引入流量优化及气溶胶损失率研究[J]. 辐射防护, 2021, 41(1): 27-32. |
[7] | 连一仁, 孙洪超, 张智, 孟东原, 孙树堂, 陈磊, 王学新, 徐潇潇, 李国强, 张建岗. 乏燃料后处理厂有机相燃烧事故研究进展[J]. 辐射防护, 2020, 40(6): 657-662. |
[8] | 杨屹, 沈福, 畅翔, 孟丹, 商洁, 马弢, 杨柳. 核设施烟囱气态流出物取样系统气溶胶穿透效率试验研究[J]. 辐射防护, 2020, 40(5): 414-418. |
[9] | 侯杰, 李雯婷, 黄力, 韩善彪, 高渝忠, 王瑞英, 李雳, 李冰, 岳会国, 陈晓秋. 防城港核电厂气态流出物取样监测探测限影响因素分析[J]. 辐射防护, 2018, 38(6): 466-469. |
[10] | 李思璇, 黄雯娜, 王钟堂, 郭秋菊. 环境样品中铀同位素的ICP-MS测量方法研究[J]. 辐射防护, 2018, 38(4): 270-274. |
[11] | 侯杰, 李航, 沈福, 陈晓秋. 秦山核电厂气态流出物气溶胶粒径分布测量[J]. 辐射防护, 2017, 37(4): 249-253. |
[12] | 倪有意, 卜文庭, 郭秋菊, 董微, 杨斌, 全葳, 孟瑞杰. 土壤中钚的迁移行为研究[J]. 辐射防护, 2017, 37(1): 1-7. |
[13] | 蒋婧, 何玮, 徐春艳, 吴浩, 刘新华, 李航, 黄彦君, 徐进财. 核设施烟囱气态流出物取样代表性验证的技术要求研究[J]. 辐射防护, 2016, 36(6): 350-357. |
[14] | 倪有意, 卜文庭, 胡丹, 许宏, 吴昱城, 郭秋菊. 土壤和沉积物中痕量Pu的ICP-MS测量方法研究[J]. 辐射防护, 2016, 36(5): 265-271. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 127
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|