[1] Hendee W R, Boteler J C. The question of health effects from exposure to electromagnetic fields [J]. Health Physics, 1994, 66(2): 127-136. [2] LI G, PANG X F. Effects of electromagnetic field exposure on electromagnetic properties of biological tissues [J]. Progress in Biochemistry and Biophysics, 2011, 38(7): 604-610. [3] Curcio G. Exposure to mobile phone-emitted electromagnetic fields and human attention: No evidence of a causal relationship [J]. Frontiers in Public Health, 2018, 6: 12. [4] LIU L Y, DENG H, TANG X P, et al. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(31): 6. [5] Larsen A I. Congenital malformations and exposure to high-frequency electromagnetic radiation among Danish physiotherapists[J]. Scandinavian Journal of Work Environment & Health, 1991, 17(5): 318-323. [6] Ouellet-Hellstrom R, Stewart W F. Miscarriages among female physical therapists who report using radio and Microwave-frequency electromagnetic radiation[J]. American Journal of Epidemiology, 1993, 138(10): 775-786. [7] Li D K, Odouli R, Wi S, et al. A population-based prospective cohort study of personal exposure to magnetic fields during pregnancy and the risk of miscarriage[J]. Epidemiology, 2002, 13(1): 9-20. [8] Savitz D A, Olshan A, Gallagher K. Maternal occupation and pregnancy outcome[J]. Epidemiology, 1996, 7(3): 269-274. [9] Roosli M. Radiofrequency electromagnetic field exposure and non-specific symptoms of ill health: A systematic review[J]. Environmental Research, 2008, 107(2): 277-287. [10] Kabuto M, Nitta H, Yamamoto S, et al. Childhood leukemia and magnetic fields in Japan: A case-control study of childhood leukemia and residential power-frequency magnetic fields in Japan[J]. International Journal of Cancer, 2010, 119(3): 643-650. [11] Genuis S J. Fielding a current idea: Exploring the public health impact of electromagnetic radiation[J]. Public Health, 2008, 122(2): 113-124. [12] Batool S, Bibi A, Frezza F, et al. Benefits and hazards of electromagnetic waves, telecommunication, physical and biomedical: A review[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(7): 3121-3128. [13] ZHOU Y J, LIU C H, HUANG Y C. Wireless power transfer for implanted medical application: A review[J]. Energies, 2020, 13(11): 30. [14] Mat M H, Abd Malek M F, Whittow W G, et al. Ear prosthesis evaluation: specific absorption rate levels in the head due to different angles and frequencies of electromagnetic exposure[J]. Journal of Electromagnetic Waves and Applications, 2015, 29(4): 514-524. [15] 马玉. 构建用于电磁辐射比吸收率数值计算的标准中国人头[D]. 北京信息科技大学, 2014. [16] Guido K, Kiourti A. Wireless wearables and implants: A dosimetry review [J]. Bioelectromagnetics,2020,41(1):3-20. [17] 吕英华. 计算电磁学的数值方法[M]. 北京:清华大学出版社, 2006. [18] Taflove A. Advances in computational electrodynamics: The finite-difference time-domain method[M]. Artech House,Boston MA, 1998. [19] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安:西安电子科技大学出版社, 2002. [20] Kiourti A, Christopoulou M, Nikita K S. Performance of a novel miniature antenna implanted in the human head for wireless biotelemetry[C]//2011 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting. APSURSI 2011, July 3, 2011 - July 8, 2011, 2011: 392-395. [21] Gemio J, Parron J, Soler J. Human body effects on implantable antennas for ism bands applications: Models comparison and propagation losses study[J]. Progress in Electromagnetics Research-Pier, 2010, 110: 437-452. [22] Soontornpipit P. Design of implanted PIFA for implantable biotelemetry locations: Chest and abdomen[C]//International Electrical Engineering Congress. iEECON 2016, March 2, 2016 - March 4, 2016, 2016: 236-239. [23] Shah I A, Basir A, Cho Y and Yoo H. Safety analysis of medical implants in the human head exposed to a Wireless power transfer system[J]. In IEEE Transactions on Electromagnetic Compatibility, 2022, 64(3):640-649. [24] Weiland T. A discretization method for the solution of Maxwell’s equations for six-component fields[J]. Electron Commun, 1977,31:116-120. [25] XU Y S, KONG L. Time domain electromagnetic differential equation methods[J]. Advanced Materials Research, 2012, (1700):490-495. [26] Leithon J. Electromagnetic simulation of a rectangular cavity: A comparison between FIT and FDTD results[M]. IEEE, 2008. [27] Al-Kalbani A I, Yuce M R, Redoute J M. Safe SAR levels in inductively powered brain implanted visual prostheses[C]//International Symposium on Electromagnetic Compatibility. EMC EUROPE 2012, September 17, 2012 - September 21, 2012, 2012. [28] Smondrk M, Benova M, Psenakova Z. Evaluation of SAR in human body model comprising of implanted pacemaker[C]//12th International ELEKTRO Conference. ELEKTRO 2018, May 21, 2018 - May 23, 2018, 2018: 1-5. [29] Spitzer V. The visible human male: Technical report[J]. J Am Med Info Association, 1996, 3: 118-130. [30] Permana H, Fang Q, Lee S Y. Comparison study on specific absorption rate of three implantable antennas designed for retinal prosthesis systems[J]. Iet Microwaves Antennas & Propagation, 2013, 7(11): 886-893. [31] Zradzinski P, Karpowicz J, Gryz K. Electromagnetic energy absorption in a head approaching a radiofrequency identification (RFID) reader operating at 13.56 MHz in users of hearing implants versus non-users[J]. Sensors, 2019, 19(17): 16. [32] ZHANG H, LIN Z, SHA W, et al. Electromagnetic-thermal analysis of human head exposed to cell phones with the consideration of radiative cooling[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17: 1584-1587. [33] A T W, B S S, B P R. Specific absorption rate and temperature distributions in human head subjected to mobile phone radiation at different frequencies - ScienceDirect[J]. International Journal of Heat and Mass Transfer, 2012, 55(1-3): 347-359. [34] Permana H, Fang Q, Rowe W S T. Hermetic implantable antenna inside vitreous humor simulating fluid[J]. Progress in Electromagnetics Research-Pier, 2012, 133: 571-590. [35] Prakash C, Gangwar R P S. Six layers circular microstrip antenna implanted in a phantom of vitreous humor[C]//2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications. IMWS-Bio 2014, December 8, 2014 - December 10, 2014, 2014: 1-3. [36] Schwerdt H N, Miranda F A, Chae J. Analysis of electromagnetic fields induced in operation of a wireless fully passive backscattering neurorecording microsystem in emulated human head tissue[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(5): 2170-2176. [37] Hout S, Chung J Y. Design and characterization of a miniaturized implantable antenna in a seven-layer brain phantom[J]. IEEE Access, 2019, 7: 162062-162069. [38] Shah I A, Yoo H. Assessing human exposure with medical implants to electromagnetic fields from a wireless power transmission system in an electric vehicle[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, (99):1-8. [39] Pisa S, Calcagnini G, Cavagnaro M, et al. SAR and temperature increase in a thorax model with implanted pace-maker under magnetic resonance imaging[C]//2008 IEEE International Symposium on Electromagnetic Compatibility. EMC 2008, August 18, 2008 - August 22, 2008. [40] Gorny K R, Bernstein M A, Felmlee J P, et al. Calorimetric calibration of head coil SAR estimates displayed on a clinical MR scanner[J]. Physics in Medicine and Biology, 2008, 53(10): 2565-2576. [41] Nordbeck P, Fidler F, Weiss I, et al. Spatial distribution of RF-induced E-fields and implant heating in MRI[J]. Magnetic Resonance in Medicine, 2010, 60(2): 312-319. [42] Bassen H, Kainz W, Mendoza G, et al. MRI-induced heating of selected thin wire metallic implants-laboratory and computational studies-findings and new questions raised[J]. Minim Invasive Ther Allied Technol, 2006, 15(2): 76-84. [43] Mattei E, Triventi M, Calcagnini G, et al. Temperature and SAR measurement errors in the evaluation of metallic linear structures heating during MRI using fluoroptic probes[J]. Physics in Medicine & Biology, 2007, 52(6): 1633-1646. [44] Dharmadhikari S, James J R, Nyenhuis J, et al. Evaluation of radiofrequency safety by high temperature resolution MR thermometry using a paramagnetic lanthanide complex[J]. Magnetic Resonance in Medicine, 2016, 75(5): 2121-2129. [45] 林浩. 比吸收率(SAR)测量值的比对评估[J]. 现代电信科技, 2012,(3): 5. [46] Kawdungta S,Boonpoonga A,Phongcharoenpanich C. MICS/ISM meander-line microstrip antenna encapsulated in Oblong-Shaped pod for gastrointestinal tract diagnosis[J].Sensors,2021,21(11):3897. [47] Laakso I, Uusitupa T, Ilvonen S. Comparison of SAR calculation algorithms for the finite-difference time-domain method[J]. Physics in Medicine & Biology, 2010, 55(15): N421. [48] 张剑. 基于有限积分技术的特高频局部放电传感器灵敏度仿真计算[J]. 电气自动化, 2019, 41(6): 4. [49] Miry C, Loison R, Gillard R. An efficient bilateral dual-grid-FDTD approach applied to on-body transmission analysis and specific absorption rate computation[J]. Ieee Transactions on Microwave Theory and Techniques, 2010, 58(9): 2375-2382. [50] 左胜, 白杨, 张玉, 等. 复杂环境中手机电磁辐射的比吸收率计算[J]. 西安电子科技大学学报, 2019, 46(02): 170-176. [51] Nguyen B T,Pilitsis J,Golestanirad L. The effect of simulation strategies on prediction of power deposition in the tissue around electronic implants during magnetic resonance imaging[J]. Physics in Medicine & Biology, 2020, 65(18):185007 (13pp). [52] Othman N, Samsuri N A, Rahim M K A, et al. Low specific absorption rate and gain-enhanced meandered bowtie antenna utilizing flexible dipole-like artificial magnetic conductor for medical application at 2.4 GHz[J]. Microwave and Optical Technology Letters, 2020, 62(12): 3881-3889. [53] Hazarika B, Basu B, Nandi A. Design of wideband AMC integrated monopole antenna with enhanced radiation performances for off-body systems[J]. Microwave and Optical Technology Letters, 2020, 63(5): 1458-1463. [54] Hazarika B, Basu B, Nandi A. An artificial magnetic conductor-backed monopole antenna to obtain high gain, conformability, and lower specific absorption rate for WBAN applications[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(12):e22441. [55] Bulla G, De Salles A A, FernáNdez-RodríGuez C. Novel monopole antenna on a single AMC cell for low SAR[J]. International Journal of Microwave and Wireless Technologies, 2020, 12(9): 825-830. |