[1] Huang C B, Lin C S. Modeling of aerosol dynamics along a vertical flat plate[J]. Building and Environment, 2006, 41(5): 568-577. [2] Willett L J, Hashim S A F, Tompson R V, et al. Effect of surface heterogeneities on condensation on an aerosol particle[J]. Journal of Aerosol Science, 1999, 30(5): 569-585. [3] Bakanov S P, Dimal V, Zaripov S K, et al. The motion of an aerosol drop in a thermal diffusion chamber[J]. Journal of Applied Mathematics and Mechanics, 2002, 66(1): 91-97. [4] Li Y, Gu W, Wang D, et al. Direct numerical simulation of polydisperse aerosol particles deposition in low Reynolds number turbulent flow[J]. Annals of Nuclear Energy, 2018, 121: 223-231. [5] 王启燕, 何启梅, 马江. 布朗扩散对颗粒床过滤的影响[J]. 环境科学与技术, 2004, 27(4): 14-16. [6] 王珂, 宋英韵, 张泽寰, 等. 放射性气溶胶的扩散迁移规律与控制措施的模拟[J]. 中国科技论文, 2017, 12(5): 581-588. [7] Song C B, Park H S. Analytic solutions for filtration of polydisperse aerosols in fibrous filter[J]. Powder Technology, 2006, 170(2): 64-70. [8] 徐新喜, 孙栋, 赵秀国, 等. 流固耦合作用下真实人体上呼吸道气溶胶扩散沉积的仿真与实验[J]. 中国生物医学工程学报, 2017, 36(3): 308-315. [9] Li C Y, Keh H J. Axisymmetric thermophoresis of an aerosol particle in a spherical cavity[J]. Journal of Aerosol Science, 2019, 135: 33-45. [10] Keh H J, Ho N Y. Concentration effects on the thermophoresis of aerosol spheres[J]. Journal of Colloid and Interface Science, 1999, 216(1): 167-178. [11] Khalizov A F, Earle M E, Johnson W J W, et al. Modeling of flow dynamics in laminar aerosol flow tubes[J]. Journal of Aerosol Science, 2006, 37(10): 1174-1187. [12] Keh H J, Chang J H. Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity[J]. Chemical Engineering Science, 1998, 53(13): 2365-2377. [13] Chang Y C, Keh H J. Thermophoretic motion of slightly deformed aerosol spheres[J]. Journal of Aerosol Science, 2010, 41(2): 180-197. [14] Li Y, Gu W, He J, et al. A new method for simulating aerosols Brownian coagulation based on finite active samples assumption[J]. Annals of Nuclear Energy, 2018, 115: 534-541. [15] Alonso M, Alguacil F J. Penetration of aerosol undergoing combined electrostatic dispersion and diffusion in a cylindrical tube[J]. Journal of Aerosol Science, 2007, 38(5): 481-493. [16] Gao Y W, Zhong K, Kang Y M. Aerosol transportation in horizontal channels with gravitational effects[J]. Particuology, 2019, 44: 159-168. [17] Gimenez M, Schlamp M, Clausse A. Analysis of the spatial distribution of aerosol dispersions[J]. Annals of Nuclear Energy, 1995, 22(1): 17-28. [18] Hussein T, Hruška A, Dohányosová P, et al. Deposition rates on smooth surfaces and coagulation of aerosol particles inside a test chamber[J]. Atmospheric Environment, 2009, 43(4): 905-914. [19] Lin J Z, Yin Z Q, Gan F J, et al. Penetration efficiency and distribution of aerosol particles in turbulent pipe flow undergoing coagulation and breakage[J]. International Journal of Multiphase Flow, 2014, 61: 28-36. [20] Lu W Z, Howarth A T. Numerical analysis of indoor aerosol particle deposition and distribution in two-zone ventilation system[J]. Building and Environment, 1996, 31(1): 41-50. [21] Jurelionis A, Gagyte· L, Prasauskas T, et al. The impact of the air distribution method in ventilated rooms on the aerosol particle dispersion and removal: The experimental approach[J]. Energy and Buildings, 2015, 86: 305-313. [22] Mao S L, Celik I B. Modeling of indoor airflow and dispersion of aerosols using immersed boundary and random flow generation methods[J]. Computers & Fluids, 2010, 39(8): 1275-1283. [23] 李家骅, 丁珏, 翁培奋. 雾层两相耦合流场及气溶胶颗粒物的动力学性质[J]. 力学季刊, 2013, 34 (1): 8-15. [24] 杨书申, 彭竹琴. 气体-颗粒两相流动力学及其在气溶胶采样中的应用[J]. 中原工学院学报, 2004, 15(2): 59-62. [25] Tavakoli F, Mitra S K, Olfert J S. Aerosol penetration in microchannels[J]. Journal of Aerosol Science, 2011, 42(5): 321-328. [26] Dwivedi A K, Khan A, Tripathi S N, et al. Aerosol depositional characteristics in piping assembly under varying flow conditions[J]. Progress in Nuclear Energy, 2019, 116: 148-157. [27] 王孔森. 核电事故中核素气溶胶烟羽扩散的模拟研究[J]. 中国安全生产科学技术, 2012, 8(3): 37-41. [28] Luo X W, Yu S Y. Deposition of aerosol particles in laminar flow over a vertical plate with variable temperatures[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2415-2421. [29] Guha A, Samanta S. Effect of thermophoresis and its mathematical models on the transport and deposition of aerosol particles in natural convective flow on vertical and horizontal plates[J]. Journal of Aerosol Science, 2014, 77: 85-101. [30] Walsh J K, Weimer A W, Hrenya C M. Thermophoretic deposition of aerosol particles in laminar tube flow with mixed convection[J]. Journal of Aerosol Science, 2006, 37(6): 715-734. [31] Guha A, Samanta S. Effect of thermophoresis on the motion of aerosol particles in natural convective flow on horizontal plates[J]. International Journal of Heat and Mass Transfer, 2014, 68: 42-50. [32] Mayya Y S, Sapra B K. Kinetic derivation of the electromigration equation for aerosol particles in the presence of bipolar charging[J]. Journal of Colloid and Interface Science, 2002, 248(2): 283-294. [33] Rudraiah N, Devaraju N, Chiu-On N G. Electrohydrodynamic dispersion of deformable aerosols in the presence of an electric field and chemical reaction using taylor dispersion model[J]. Journal of Hydrodynamics, Ser B, 2011, 23(2): 247-257. [34] Asgari M, Lucci F, Kuczaj A K. Multispecies aerosol evolution and deposition in a bent pipe[J]. Journal of Aerosol Science, 2019, 129: 53-70. [35] 孙雪霆, 陈林林, 史晓磊, 等. 严重事故下水蒸气凝结对气溶胶扩散泳影响研究[J]. 原子能科学技术, 2017, 51(1): 73-78. [36] He Y P, Gu Z L, Lu W Z, et al. Atmospheric humidity and particle charging state on agglomeration of aerosol particles[J]. Atmospheric Environment, 2019, 197: 141-149. [37] 高鸿恩, 王青海, 郑军芳, 等. 气溶胶粒子在裂隙中穿透特性实验研究[J]. 中国粉体技术, 2011, 17(1): 43-45. [38] 高鸿恩, 李国申, 黄晟敏, 等. 气溶胶在岩体裂隙中迁移特性的实验研究[J]. 中国粉体技术, 2012, 18(4): 32-34+38. |