[1] 王津, 李红春, 刘娟, 等. 铀矿开采利用过程中的放射性污染研究进展[J]. 环境与健康杂志, 2013, 30(11):1033-1036. [2] 许冬梅. 浅谈铀矿山的环境污染及治理对策[J]. 环境研究与监测, 2009, 22(2):34-35. [3] 荣丽杉. 铀污染土壤的植物-微生物修复及其机理研究[D]. 南华大学, 2015. [4] Abdel-Sabour M F. Remediation and bioremediation of uranium contaminated soils[J]. Electronic Journal of Environmental, Agricultural and Food Chemistry, 2007, 6(5):2009-2023. [5] 万芹方, 邓大超, 柏云, 等. 植物和动电修复铀污染土壤的研究现状[J]. 核化学与放射化学, 2012, 34(3):148-156. [6] Ibrahim M, Adrees M, Rashid U, et al. Chapter 21-Phytoremediation of radioactive contaminated soils[J]. Soil Remediation and Plants, 2015:599-627. [7] UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Introduction to phytoremediation[M]. Washington D. C. :United States Environmental Protection Agency, 2000. [8] Krmer U. Metal hyper accumulation in plants[J]. Annual Review of Plant Biology, 2010, 61(1):517-534. [9] Miloge R, Saric M, Mirjana S, et al. Uranium in plant species grown on natural barren soil[J]. Journal of Plant Nutrition, 1995, 18(7):1509-1518. [10] Ebbs S D, Brady D J, Kochian L V. Role of uranium speciation in the uptake and translocation of uranium by plants[J]. Journal of Experimental Botany, 1998, 49(324):1183-1190. [11] Shahandeh H, Hossner H. Role of soil properties in phytoaccumulation of uranium[J]. Water, Air & Soil Pollution, 2002, 141:165-180. [12] Ramaswami A, Carr P, Burkhardt M. Plant-uptake of uranium: hydroponic and soil system studies[J]. International Journal of Phytoremediation, 2001, 3(2):189-201. [13] Whitehead N E, Brooks R R. Aquatic bryophytes as indicators of uranium mineralization[J]. The Bryologist, 1969, 72(4):501-507. [14] 谢红艳, 胡劲松, 殷杰, 等. 某铀尾矿区植物组成及其对铀的积累作用研究[J]. 原子能科学技术, 2014, 48(11):1954-1959. [15] 聂小琴, 丁德馨, 李广悦, 等. 某铀尾矿库土壤核素污染与优势植物累积特征[J]. 环境科学研究, 2010, 23(6):719-725. [16] 徐俊, 龚永兵, 张倩慈, 等. 三种植物对铀耐性及土壤中铀吸收积累差异的研究[J]. 化学研究与应用, 2009, 21(3):322-326. [17] 唐丽, 柏云, 邓大超, 等. 修复铀污染土壤超积累植物的筛选及积累特征研究[J]. 核技术, 2009, 32(2):136-141. [18] 牛天洋, 史泽涵, 陈井影, 等. 黑麦草修复铀污染土壤的根际效应分析[J]. 安徽农业科学, 2021, 49(3):69-71+75. [19] 沙银花, 胡南, 陈思羽, 等. 雀稗-博落回间作强化修复铀污染土壤的研究[J]. 南华大学学报(自然科学版), 2019, 33(2):22-26+32. [20] 贾文甫, 罗学刚, 陈功亮, 等. 黄秋葵对铀胁迫的光合生理响应及吸收特征[J]. 环境科学与技术, 2015, 38(10):41-47. [21] 王瑞兰, 易俗, 陈康贵, 等. 夹竹桃(Nerium indicum)等四种植物放射性核素U、226Ra的含量研究[J]. 湘潭师范学院学报(自然科学版), 2002, 4(2):73-77. [22] 万芹方, 任亚敏, 王亮, 等. 铀污染土壤的植物修复研究[J]. 化学学报, 2011, 69(15):1780-1788. [23] Lovley D R, Phillips E J. Reduction of uranium by Desulfovibrio desulfuricans[J]. Applied & Environmental Microbiology, 1992, 58(3):850-856. [24] Lakaniemi A M, Douglas G B, Kaksonen A H. Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments[J]. Journal of Hazardous Materials, 2019, 371:198-212. [25] Newsome L, Morris K, Lloyd J R. Uranium biominerals precipitated by an environmental isolate of serratia under anaerobic conditions[J]. Plos One, 2015, 10(7):e132392. [26] Macaskie L, Empson R, Cheetham A, et al. Uranium bioaccumulation by a Citrobacter sp. as aresult of enzymically mediated growth of polycrystalline HUO2PO4[J]. Science, 1992, 257(5071):782-784. [27] Liang X, Csetenyi L, Gadd G M. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates[J]. Applied Microbiology Biotechnology, 2016, 100(11):5141-5151. [28] Park D M, Jiao Y. Modulation of medium pH by caulobacter crescentus facilitates recovery from uranium-induced growth arrest[J]. Applied & Environmental Microbiology, 2014, 80(18):5680-5688. [29] Gorman-Lewis D, Elias P E, Fein J B. Adsorption of aqueous uranyl complexes onto Bacillus subtilis cells[J]. Environmental Science & Technology, 2005, 39(13):4906-4912. [30] Malekzadeh F, Farazmand A, Ghafourian H, et al. Uranium accumulation by a bacterium isolated from electroplating effluent[J]. World Journal of Microbiology and Biotechnology, 2002, 18(4): 295-302. [31] Suzuki Y, Banfield J F. Geomicrobiology of uranium[J]. Reviews in Mineralogy & Geochemistry, 1999, 38(4):393. [32] Vanengelen M R, Field E K, Gerlach R, et al. UO22+ speciation determines uranium toxicity and bioaccumulation in an environmental Pseudomonas sp. isolate[J]. Environmental Toxicology and Chemistry, 2010, 29(4):763-769. [33] Merroun M, Hennig C, Rossberg A, et al. Characterization of U(VI)-Acidithiobacillus ferrooxidans complexes using EXAFS, transmission electron microscopy, and energy-dispersive X-ray analysis[J]. Radiochim Acta, 2009, 91(10):583-591. [34] Merroun M, Nedelkova M, Rossberg A, et al. Interaction mechanisms of uranium with bacterial strains isolated from extreme habitats[J]. Special Publication-Royal Society of Chemistry, 2006, 94:723-729. [35] Tapia-Rodríguez A, Luna-Velasco A, Field J A, et al. Toxicity of uranium to microbial communities in anaerobic biofilms[J]. Water, Air & Soil Pollution, 2012, 223(7):3859-3868. [36] Belli K M, Dichristina T J, Cappellen P V, et al. Effects of aqueous uranyl speciation on the kinetics of microbial uranium reduction[J]. Geochimica Et Cosmochimica Acta, 2015, 157(15):109-124. [37] Senko J M, Kelly S D, Dohnalkova A C, et al. The effect of U(VI) bioreduction kinetics on subsequent reoxidation of biogenic U(IV)[J]. Geochimica et Cosmochimica Acta, 2007, 71(19):4644-4654. [38] Boonchayaanant B, Kitanidis P K, Criddle C S. Growth and cometabolic reduction kinetics of a uranium- and sulfate-reducing Desulfovibrio/Clostridia mixed culture: Temperature effects[J]. Biotechnology and Bioengineering, 2008, 99(5):1107-1119. [39] Barlett M, Moon H S, Peacock A A, et al. Uranium reduction and microbial community development in response to stimulation with different electron donors[J]. Biodegradation, 2012, 4(23):535. [40] Long P E, Williams K H, Davis J A, et al. Bicarbonate impact on U(VI) bioreduction in a shallow alluvial aquifer[J]. Geochimica et Cosmochimica Acta, 2015, 150:106. [41] Spear J R, figueroa L A, Honeyman B D. Modeling reduction of uranium U(VI) under variable sulfate concentrations by sulfate-reducing bacteria[J]. Applied & Environmental Microbiology, 2000, 66(9):3711. [42] HUA B, XU H, Terry J, et al. Kinetics of uranium(VI) reduction by hydrogen sulfide in anoxic aqueous systems[J]. Environmental Science & Technology, 2006, 40(15):4666-4671. [43] Tucker M D, Barton L L, Thomson B M. Removal of U and Mo from water by immobilized desulfovibrio desulfuricans in column reactors[J]. Biotechnology & Bioengineering, 2015, 60(1):88-96. [44] Fredrickson J K, Zachara J M, Kennedy D W, et al. Reduction of U(VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium[J]. Geochimica et Cosmochimica Acta, 2000, 64(18):3085-3098. [45] Stewart B D, Amos R T, Fendorf S. Effect of uranium(VI) speciation on simultaneous microbial reduction of uranium(VI) and iron(III)[J]. Journal of Environmental Quality, 2011, 40(1):90-97. [46] Lovley D R, Phillips E J P. Bioremediation of uranium contamination with enzymatic uranium reduction[J]. Environmental Science&Technology, 1992, 26(11):1451-1465. [47] Brooks S C, Fredrickson J K, Carroll S L, et al. Inhibition of bacterial U(VI) reduction by calcium[J]. Environmental Science & Technology, 2003, 37(9):1850-1858. [48] Holmes D E, Giloteaux L, Williams K H, et al. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater[J]. The ISME Journal, 2013, 7(7):1286-1298. [49] Tsezos M. Recovery of uranium from biological adsorbents desorptio equilibrium[J]. Biotechnology and Bioengineering, 1984, 26(8):973-981. [50] Galun M, Keller P P. Recovery of uranium(VI) from solution using fungi Ⅱ. release from uraniumloaded Penicillium biomass[J]. Water, Air & Soil Pollution, 1983, 20(3):221-232. [51] 王水云, 谢水波, 李仕友, 等. 啤酒酵母菌吸附废水中铀的研究进展[J]. 铀矿冶, 2008, 27(2):96-101. [52] Ferris N, Meyers-Nem P. Biosorption of uranium and lead by Streptomyces Longwoodensis[J]. Biotechnology and Bioengineering, 1986, 28(1):21-28. [53] Anoop K, Viraraghavan T, Cullimore R D. Removal of heavy metals using the fungus Asperqillus niger[J]. Bioresource Technology, 1999, 70(1):95-104. [54] 张小枝, 罗上庚, 杨群, 等. 满江红鱼腥藻吸附低浓度铀的研究[J]. 核化学与放射化学, 1998, 20(2):114-118. [55] 柏云, 张静, 冯易君. 生物吸附法处理含铀废水研究进展[J]. 四川环境, 2003, 22(2):9-13. [56] Raff J, Berger S, Selenska-Pobell S. Uranium binding by Slayer carrying isolates of the genus bacillus[R]. Berlin:Institute of Radiochemistry, 2005:29. [57] Gonzalez-Munoz M T, Merroun M L, Omar N B, et al. Biosorption of uranium by Myxococcus xanthus[J]. International Biodeterioration & Biodegradation, 1997, 40(2/4):107-114. [58] Sar P, Kazy S K, Dsouza S F. Radionuclide remediation using a bacterial biosorbent[J]. International Biodeterioration & Biodegradation, 2004, 54(2/3):193-202. [59] 王宝娥, 徐伟昌, 谢水波, 等. 啤酒酵母菌固定化凝胶颗粒吸附铀的研究[J]. 铀矿冶, 2005, 24(1): 34-37. [60] 郝希超. 铀污染土壤牧草-微生物联合修复工艺技术[D]. 西南科技大学, 2016. [61] 贾彦博, 芮昶, 季天委, 等. 土壤铜污染的微生物及酶学指标研究[J]. 广东微量元素科学, 2009, 16(3):44-47. [62] Braud A, Jézéquel K, Bazot S, et al. Enhanced phytoextraction of an agricultural Cr- and Pb- contaminated soil by bioaugmentation with siderophore-producing bacteria[J]. Chemosphere, 2009, 74(2): 280-286. [63] 杨春. 微量元素与健康[J]. 微量元素与健康研究, 2003, 20:61-62. [64] Ma Y, Prasad M N V, Rajkumar M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances, 2011, 29(2):248-258. [65] Chen B, Roos P, Borggaard O K, et al. Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer[J]. New Phytologist, 2005, 165(2):591-598. [66] Chen B D, Jakobsen I, Roos P, et al. Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil[J]. Plant and Soil, 2005, 275(1):349-359. [67] Chen B D, Zhu Y G, Smith F A. Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil[J]. Chemosphere, 2006, 62(9):1464-1473. [68] Li C W, Hu N, Ding D X, et al. Phytoextraction of uranium from contaminated soil by Macleaya cordata before and after application of EDDS and CA[J]. Environmental Science and Pollution Research, 2015, 22(8):6155-6163. [69] Radka S, DanielA P, Toma′s M, et al. The effect of EDDS chelate and inoculation with the arbuscular mycorrhizal fungus Glomus intraradices on the efficacy of lead phytoextraction by two tobacco clones[J]. Applied Soil Ecology, 2007(35):163-173. |