[1] Liamsuwan T, Emfietzoglou D, Uehara S, et al. Microdosimetry of low-energy electrons[J]. International Journal of Radiation Biology, 2012,88(12):899-907. [2] Rosenzweig W, Rossi H H. Determination of the quality of the absorbed dose delivered by monenergistic neutrons[J]. Radiation Research, 1959,10(5):532-544. [3] Pimblott S M, Laverne J A. Production of low-energy electrons by ionizing radiation[J]. Radiation Physics & Chemistry, 2007,76(8):1244-1247. [4] Nikjoo H, Goodhead D T. Track structure analysis illustrating the prominent role of low-energy electrons in radiobiological iffects of low-LET radiations[J]. Physics in Medicine & Biology, 1991,36(2):229-238. [5] Bernal M A, Bordage M C, Brown J M C, et al. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit[J]. Physica Medica, 2015,31(8):861-874. [6] Schulte R W, Wroe A J, Bashkirov V A, et al. Nanodosimetry-based quality factors for radiation protection in space[J]. Zeitschrift Fur Medizinische Physik, 2008,18(4):286-296. [7] Nikjoo H, Uehara S, Emfietzoglou D, et al. Track-structure codes in radiation research[J]. Radiation Measurements, 2006,41(9-10):1052-1074. [8] Goodhead D T. Energy deposition stochastics and track structure: What about the target?[J]. Radiation Protection Dosimetry, 2005,122(1-4):3-15. [9] Nikjoo H, Uehara S, Emfietzoglou D, et al. A database of frequency distributions of energy depositions in small-size targets by electrons and ions[J]. Radiation Protection Dosimetry, 2011,143(2-4):145-151. [10] Lindborg L, Nikjoo H. Microdosimetry and radiation quality determinations in radiation protection and radiation therapy[J]. Radiation Protection Dosimetry, 2011,143(2-4):402-408. [11] Kyriakou I, Emfietzoglou D, Ivanchenko V, et al. Microdosimetry of electrons in liquid water using the low-energy models of Geant4[J]. Journal of Applied Physics, 2017,122(2):24303. [12] Incerti S, Kyriakou I, Bernal M A, et al. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA project[J]. Medical Physics, 2018,45(8):E722-E739. [13] Lindborg L, Hultqvist M, Carlsson T, et al. Lineal energy and radiation quality in radiation therapy: Model calculations and comparison with experiment[J]. Physics in Medicine & Biology, 2013,58(10):3089-3105. [14] Villagrasa C, Francis Z, Incerti S. Physical models implemented in the Geant4-DNA extension of the Geant-4 toolkit for calculating initial radiation damage at the molecular level[J]. Radiation Protection Dosimetry, 2011,143(2-4):214-218. [15] Incerti S, Ivanchenko A M, Mantero A, et al. Comparison of Geant4 very low energy cross section models with experimental data in water[J]. Medical Physics, 2010,37(9):4692-4708. [16] Lillh K J E, J-E G, Lindborg L, et al. Nanodosimetry in a clinical neutron therapy beam using the variance-covariance method and Monte Carlo simulations[J]. Physics In Medicine & Biology, 2007,52(16):4953-4966. [17] Nikjoo H, Uehara S. Comparison of various Monte Carlo track structure codes for energetic electrons in gaseous and liquid water[J]. Basic Life Sciences, 1994,63:167. [18] Uehara S, Nikjoo H, Goodhead D T. Cross-sections for water vapour for the Monte Carlo electron track structure code from 10 eV to the MeV region[J]. Physics in Medicine & Biology, 1993,38(12):1841. [19] Francis Z, Incerti S, Ivanchenko V, et al. Monte Carlo simulation of energy-deposit clustering for ions of the same LET in liquid water[J]. Physics in Medicine & Biology, 2012,57(1):209-224. [20] http://geant4-data.web.cern.ch/geant4-data/releasenotes/releasenotes4.10.4.html[EB/OL]. [21] Francis Z, Incerti S, Capra R, et al. Molecular scale track structure simulations in liquid water using the Geant4-DNA Monte-Carlo processes[J]. Applied Radiation & Isotopes, 2011,69(1):220-226. [22] Apostolakis J, Asai M, Bagulya A, et al. Progress in Geant4 electromagnetic physics modelling and validation[J]. Journal of Physics: Conference Series, 2015,664(7):072021. [23] Ivanchenko V N, Kadri O, Maire M, et al. Geant4 models for simulation of multiple scattering[J]. Journal of Physics: Conference Series, 2010,219(3):032045. [24] Champion C, Incerti S, Aouchiche H, et al. A free-parameter theoretical model for describing the electron elastic scattering in water in the Geant4 toolkit[J]. Radiation Physics And Chemistry, 2009,78(9):745-750. [25] Kyriakou I, Incerti S, Francis Z. Technical Note: Improvements in Geant4 energy-loss model and the effect on low-energy electron transport in liquid water[J]. Medical Physics, 2015,42(7):3870-3876. [26] Bordage M C, Bordes J, Edel S, et al. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA[J]. Physica Medica, 2016,32(12):1833-1840. [27] Emfietzoglou D. Inelastic cross-sections for electron transport in liquid water: a comparison of dielectric models[J]. Radiation Physics & Chemistry, 2003,66(6):373-385. [28] Emfietzoglou D, Nikjoo H. The effect of model approximations on single-collision distributions of low-energy electrons in liquid water[J]. Radiation Research, 2005,163(1):98-111. [29] Bordage M C, Bordes J, Edel S, et al. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA[J]. Physica Medica, 2016,32(12):1833-1840. [30] Kim Y K, Rudd M E. Binary-encounter-dipole model for electron-impact ionization[J]. Physical Review A, 1994,50(5):3954. [31] Kellerer A M. The dosimetry of ionizing radiation[M]. Academic Press, 1985. |