[1] Papastefanou C. Radioactive a Aerosols[M]. Thessaloniki,Greece: Elsevier Science Press, 2008:52-54. [2] Taylor T B. Nuclear Safeguards[J]. Annual Review of Nuclear Science, 1975,25:407-421. [3] Musolino S V, Harper F T. Emergency Response Guidance for the First 48 Hours after the Outdoor Detonation of an Explosive Radiological Dispersal Device[J]. Health Physics, 2006,90(4):377-385. [4] Harper F T, Musolino S V, Wente W B. Realistic RadiologicalDispersal Device Hazard Boundaries and Ramification for Early Consequence Management Decisions[J]. Health Physics, 2007,93(1):1-16. [5] (美)威克 著. 钚手册技术指南第二卷(修订版)[M]. 《钚手册》编译组 译. 北京: 中国原子能出版社, 2015:967-1006. [6] (德)理查德 著. CBRN防护——化学、生物、放射性和核武器威胁的管理[M]. 裴承新, 夏治强, 习海玲 译. 北京: 国防工业出版社, 2014:154-158. [7] Demokritou P, Lee S J, Ferguson S T. A Compact Multistage Cascade Impactor Characterization of Atmospheric Aerosols[J]. Journal Aerosol Science, 2004,35:281-299. [8] Lal D, Suess H E. The Radioactivity of the Atmosphere and Hydrosphere[J]. Annual Review of Nuclear Science, 1968,18:407-434. [9] Thomas H P. Environmental Aspects of Nuclear Energy Production[J]. Annual Review of Nuclear Science, 1974,24:515-560. [10] Drell S, Peurifoy B. Technical Issue of a Nnuclear Test Ban[J].Annual Review of Nuclear and Particle Science, 1994,44:285-327. [11] Kajino M, Inomata Y, Sato K. Development of the RAQM2 Aerosol Chemical Transport Model and Predictions of the Northeast Asian Aerosol Mass, Size,Chemistry, and Mixing Type[J]. Atmospheric Chemistry and Physics, 2012,12:11833-11856. [12] Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics[M].New York: Wiley Press, 1998:33. [13] 赵海波, 郑楚光. 离散系统动力学演变过程的颗粒群平衡模拟[M]. 北京:科学出版社, 2008:50. [14] Friedlander S K. Smoke, dust and haze: Fundamentals of aerosol dynamics[M]. New York: Oxford University Press, 2000:42-43. [15] Waber J T, Olson W M, Roof R B. Atmospheric Corrosion Tests of Several Delta-phase Alloys of Plutonium[J]. Journal of Nuclear Materials, 1961,3: 201-215. [16] Guo L J, Chen L, Zheng Y. Research on Fractionation of Radionuclides in Nuclear Explosions[J]. Nuclear Electronics and Detection Technology, 2012,32(7):772-778. [17] Yuan W. Uranium Aerosol Reaction Change Under the Explosion Condition[J]. World Nuclear Geo-science, 2013,30(1):56-60. [18] Li Q, Wang H Y, Jiang G. Structure and Potential Energy Function of PuX+(X=O,H,N,C)[J]. Acta Physico-Chimica Sinica, 2001,17(7):622-625. [19] Cheng Y S, Holmes T D, George T G. Size Measurement of Plutonium Particles from Iinternal Sputtering into Air[J]. Nuclear Instruments and Methods in Physics Research B, 2005,234(3):219-225. [20] Li W Q. Fundamentals of Aerosol Pollution Chemistry[M]. Zhengzhou: Yellow River Conservancy Press, 2010:13-14. [21] Ranebo Y, Niagolova N, Erdmann N. Production and Characterizationof Monodisperse Plutonium, Uranium, and Mixed Uranium-plutonium Particles for Nuclear Safeguard Applications[J]. Analytical Chemistry, 2010,82:4055-4062. [22] Kogan V, Schumacher P M. Plutonium Release Fractions from Accidental Fires[J]. Nuclear Technology, 2008,161:190-202. [23] Durante M, Manti L. Estimates of Radiological Risk from a Terrorist Attack Using Plutonium[J]. Radiation and Environmental Biophysics, 2002,41:125. [24] Laul J C, Foppe T L, Mishima J. Applicability of Airborne ReleaseFraction and Respirable Fraction Values to Particulate Toxic Chemical Material Releases at DOE Sites[J]. Journal of Chemical Health & Safety, 2006,13(6):7-11. [25] Cheng Y S, Raymond A G, Zhou Y, et al. Characterization of Plutonium Aerosol Collected during an Accident[J]. Health Physics, 2005,87(6):596-605. [26] Zia Mian, Ramana M V, Rajaraman R. Plutonium Dispersal and HealthHazards from Nuclear Weapon Accidents[J]. Current Science, 2001,80(10):1275-1284. [27] Plionis A A, Peterson D S, Tandon L, et al. Alpha Spectrometric Characterization of Process-related Particle Size Distributions from Active Particle Sampling at the Los Alamos National Laboratory Uranium Foundry[J]. Material Science and Engineering, 2010,9(1):12-41. [28] Haschke J M. Evaluation of Source-term Data for Plutonium Aerosolization[R]. Los Alamos, New Mexico: Los Alamos National Laboratory Report, LA-12315-MS, on: DE92040908,1992. [29] Hanson W C, Elder J C, Ettinger H J. Particle Size d Distributionof Fragments from Depleted Uranium Penetrators Fired Against Armor Plate Targets[R]. Los Alamos, New Mexico: Los Alamos National Laboratory Report, LA-5654-UC-41, 1974. [30] Notley M J F, Hodkin E N, Davidson J A C. The Oxidation of Plutonium and Certain Plutonium Alloys in Air and in Carbon Dioxide[R]. Harwell, England: United Kingdom Atomic Energy Authority Research Group Report, AERER-4070,1962. [31] Chikalla T D, McNeilly C E, Skavdahl R E. The Plutonium-oxygen System[R]. Hanford, Washington: USAEC Report HW-74802, 1962. [32] Holley C E, Mulford R N R, Huber E L. Thermodynamics and Phase Relationships for Plutonium Oxides[C]. //Proceeding of the Second United NationsInternational Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958,6:215-220. [33] McNeilly C E. Electrical Properties of Plutonium Oxides[R]. Hanford, Washington: USAEC Report HW-75120, 1962. [34] (美)威克 著. 钚手册技术指南第一卷[M]. 《钚手册》编译组 译. 北京:中国原子能出版社, 2015:206-207. [35] Schnizlein J G, Fischer D F. Plutonium Oxidation-ignition Sstudies in Chemical Engineering Division Summary Report[R]. Argonne: USAEC Report ANL-6687, 1963. [36] Fischer D F, Schnizlein J G. Plutonium Oxidation-ignition Studiesin Chemical Engineering Division Summary Report[R]. Argonne: USAEC Report ANL-6800, 1964. [37] 刘文杰, 胡八一, 李庆忠. 核事故条件下钚气溶胶源项研究综述[J]. 安全与环境学报, 2011,11(5):259-263. [38] Liu W J, Wang P L, Xiao Z Q. Brief Analysis of the Simulative Plutonium Aerosol Source-term in the Circumstance of High Explosive Detonation[J]. Advanced Materials Research, 2012,518-523: 946-950. [39] 刘文杰,李庆忠. 炸药化爆及火灾环境中钚气溶胶源项的研究[J]. 高能量密度物理, 2014,3:125-133. [40] Nelson LS. Unusually High (Oxidizer/Pu) Ratios in the Macro-residues from Plutonium Droplet Combustion[J]. High Temperature Science, 1980,12:297. [41] Eidson AF, Yeh H C, Kanapilly G M. Plutonium Aerosol Generation inReducing and Oxidizing Atmospheres at High Temperatures[J]. Journal of Nuclear Materials, 1988,152:41-52. [42] Schnizlein J G, Fischer D F. Plutonium Oxidation-ignition Studiesin Chemical Engineering Division Summary Report[R]. Argonne: USAEC Report ANL-6413, 1961. [43] Rolf Bjornerstedt. Physics, Chemistry, and Meteorology of Fallout[J]. Annual Review of Nuclear and Particle Science, 1963,13:505-533. [44] Chatfield E J. The Generation of Particulate Aerosols from Plutonium Surface[J]. Atmospheric Environment, 1968,2:97. [45] Lind O C, Salbu B, Janssens K, et al. Characterization of Uraniumand Plutonium Containing Particles Originating from the Nuclear Weapons Accidentin Thule, Greenland, 1968[J]. Journal of Environmental Radioactivity, 2005,81(1):21-32. [46] Salbu B, Krekling T, Lind O C, et al. High Energy X-ray Microscopy for Characterisation of Fuel Particles[J]. Nuclear Instruments and Methods in Physics Research, 2001,467-468(7):1249-1252. [47] Shinonaga T, Donohue D, Aigner H, et al. Production and Characterization of Plutonium Ddioxide Particles as a Quality Control Material for Safeguards Purposes[J]. Analytical Chemistry, 2012,84(6):2638-2646. [48] Muramatsu Y, Ruhm W, Yoshida S. Concentrations of 239Pu and 240Pu and Their Isotopic Ratios Determined by ICP-MS in SoilsCollected from the Chernobyl 30 km Zone[J]. Environmental Science & Technology, 2000,34:2913-2917. [49] Jost D T, Gaggeler H W, Baltensperger U. Chernobyl Fallout in Size-tractionated Aerosol[J]. Nature, 1986,324:22-23. [50] Salbu B, Janssens K, Lind O C. Oxidation Atates of Uranium in DU Particles from Kosovo[J]. Journal of Environmental Radioactivity, 2003,64:167-173. [51] Salbu B, Janssens K, Lind O C. Oxidation States of Uranium in DU Particles from Kuwait[J]. Journal of Environmental Radioactivity, 2004,78:125-135. [52] Oki Y. Particle Size and Fuming Rate of Radioactive Aerosols Generated during the Heat Cutting of Activated Metals[J]. Applied Radiation and Isotopes, 1994,45:553-562. [53] Shimada T, Tanaka T. Characterization on the Radioactive AerosolsDispersed During Plasma arc Cutting of Radioactive Metal Piping[J]. Journal ofRadioanalytical and Nuclear Chemistry, 2015,303:1345-1349. [54] Tanaka M, Tsujimura Y. Visualization of Metal Vapor Behavior in TIG Welding[J]. Quarterly Journal Japanese Weld Society, 2012,30(2):164-170. [55] Peter C B, Rodney C E, Alexandra N. Nuclear Fuel in a Reactor Accident[J]. Science, 2012,335:1184-1187. [56] Yoshinari Abe, Yushin Iizawa, Yasuko Terada. Detection of Uraniumand Chemical State Analysis of Individual Radioactive Microparticles Emitted from the Fukushima Nuclear Accident Using Multiple Synchrotron Radiation X-ray Analyses[J]. Analytical Chemistry, 2014,86:8521-8525. [57] Kaneyasu N, Ohashi H, Suzuki F. Sulfate Aerosol as a Potential Transport Medium of Radiocesium from the Fukushima Nuclear Accident[J]. Environmental Science & Technology, 2012,46:5720-5726. [58] Di Lemma F G, Colle J Y, Ernstberger M. RADES an Experimental Set-up for the Characterization of Aerosol Release from Nuclear and Radioactive Materials[J]. Journal of Aerosol Science, 2014,70:36-49. [59] Sidney D, Bob P. Technical Issues of a Nuclear Test Ban[J]. Annual Review Nuclear Particulate Science, 1994,44:285-327. [60] Welland M, Lewis B, Thompson W. A Comparison of Stefan and Phase Field Modeling Techniques for the Simulation of Melting Nuclear Fuel[J]. Journal of Nuclear Materials, 2008,376(2):229-239. [61] Lee S D, Snyder E G, Willis R. Radiological Dispersal Device Outdoor Simulation Test: Cesium Chloride Particle Characteristics[J]. Journal of Hazardous Materials, 2010,176(1-3):56-63. [62] Ren Y, Cheng C, Chen J. Thermal Ablation of Metal Films by Femtosecond Laser Bursts[J]. International Journal of Thermal Sciences, 2013,70:32-40. [63] Alonso M, Huang C H. Particle Segregation in Aerosol Flow[J]. Journal of Aerosol Science, 2015,81:24-33. [64] Lehtinen K E J, Windeler R S, Friedlander S K. Theory of the Onsetof Dendrite Formation[J]. Journal of Aerosol Science, 1995,26:51-52. [65] Charles F C, Kari E J L, Markku K. Size Diffusion for the Growth of Newly Nucleated Aerosol[J]. Journal of Aerosol Science, 2004,35:1439-1451. [66] 唐仕英, 林俊德, 刘晓新. 密封爆炸Ag气溶胶生成、沉降的实验研究[J].应用物理, 2010,1(1):80-83. [67] 李冬梅, 刘龙波, 周国庆. 某污染区含钚再悬浮气溶胶的粒度特征[J].辐射防护, 2014,34(6):376-380. [68] 郝樊华,刘晓亚,肖成建. 爆轰条件下的气溶胶粒径分布及Ag质量分数与粒径的关系[J]. 核技术, 2009,32(5):343-346. [69] 刘文杰, 马庆鹏, 田立智. 炸药化学爆炸环境中模拟钚气溶胶源项实验研究[J]. 兵工学报, 2016,37(3):447-454. |