[1] Backblom Goran, Conrox AB. Excavation damage and disturbance in crystalline rock-results from experiments and analyses [R]. Solna: Swedish Nuclear Fuel and Waste Management Co, 2008. [2] Tsang C-F, Bernier F. Definitions of excavation disturbed zone and excavation damaged zone [R]. In: EU Impact of excavation disturbed or damaged zone (EDZ) on the performance of radioactive waste geological repositories. Proc European Commission Cluster Conf and Workshop. European Commission EUR 21028 En, 2005. [3] Siren T, Kantia P, Rinne M. Considerations and observations of stress-induced and construction-induced excavation damage zone in crystalline rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 73:165-174. [4] 王驹, 陈伟明, 苏锐,等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4):801-812. WANG Ju, CHEN W, SU Rui, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics & Engineering, 2006, 25(4):801-812. [5] Read R S. 20 years of excavation response studies at AECL's Underground Research Laboratory[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8):1 251-1 275. [6] Martino J B, Chandler N A. Excavation-induced damage studies at the Underground Research Laboratory[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8):1 413-1 426. [7] 马洪素, 王驹. 高放废物处置工程EDZ测试方法及其原位应用[J]. 世界核地质科学, 2014,30(S1): 253-259. MA Hongsu, WANG Ju. EDZ characterization methods and in-situ application in geological disposal of high level radioactive waste[J]. World Nuclear Geoscience, 2014,30(S1): 253-259. [8] Olsson, Mats, Markström, et al. Methodology study for documentation and 3D modelling of blast induced fractures[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2008. [9] Young R P, Collins D S. Seismic studies of rock fracture at the underground research laboratory, Canada[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(6):787-799. [10] Thorbjarnardottir B S, Pechmann J C. Constraints on relative earthquake locations from cross-correlation of waveforms[J]. Bulletin of the Seismological Society of America, 1987, 77(5):1 626-1 634. [11] Jones R H, Stewart R C. A method for determining significant structures in a cloud of earthquakes[J]. Journal of Geophysical Research Atmospheres, 1997, 102(B4):8 245-8 254. [12] CHEN S, YANG C, WANG G, et al. Similarity assessment of acoustic emission signals and its application in source localization[J]. Ultrasonics, 2016, 75:36-45. [13] CAI M, Kaiser P K, Martin C D. Quantification of rock mass damage in underground excavations from microseismic event monitoring[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(8):1 135-1 145. [14] Young R P, Collins D S, Reyes-Montes J M, et al. Quantification and interpretation of seismicity[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8):1 317-1 327. [15] Falls S D, Young R P. Examination of the Excavation-disturbed zone in the Swedish ZEDEX tunnel using acoustic emission and ultrasonic velocity measurements[R]. ISRM International Symposium - EUROCK 96, 1996. [16] Falls S D, Young R P. Acoustic emission and ultrasonic-velocity methods used to characterise the excavation disturbance associated with deep tunnels in hard rock[J]. Tectonophysics, 1998, 289(1): 1-15. [17] Andersson J C, Martin C D. The Äspö pillar stability experiment: Part I—Experiment design[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(5):865-878. [18] Andersson J C, Martin C D, Stille H. The Äspö pillar stability experiment: Part II—Rock mass response to coupled excavation-induced and thermal-induced stresses[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(5):879-895. [19] Erik Johansson, Topias Siren, Matti Hakala, et al. 2014 ONKALO Pose experiment—phase 1&2:execution and monitoring[R]. Olkiluoto: Posiva Oy, 2012. [20] Jouni Valli, Matti Hakala, Toivo Wanne. 2014 ONKALO POSE experiment—phase 3: execution and monitoring[R]. Olkiluoto: Posiva Oy, 2012. [21] Maxwell S C, Young R P, Read R S. A micro-velocity tool to assess the excavation damaged zone[J]. International Journal of Rock Mechanics & Mining Sciences, 1998, 35(2):235-247. [22] Cosma C , Cozma M, Balu L, et al. Rock mass seismic imaging around the ONKALO tunnel[R]. Olkiluoto: Posiva Oy, 2008. [23] Silvast M, Wiljanen B. ONKALO EDZ-measurements using ground penetrating radar (GPR) method[R]. Olkiluoto: Posiva Oy, 2008 [24] Eero Heikkinen, Pekka, Kantia, Tomas Lehtimaki et al. EDZ assessments in various geological environments using GPR method [R]. Olkiluoto: Posiva Oy, 2010. [25] Kwon S, Lee C S, Cho S J, et al. An investigation of the excavation damaged zone at the KAERI underground research tunnel[J]. Tunnelling & Underground Space Technology, 2009, 24(1):1-13. [26] Gray M. OECD/NEA international stripa project 1980—1992. Overview Volume III, engineered barriers[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2008. [27] Chandler N A, Aecl E T K, Martin C D. Connected pathways in the EDZ and the potential for flow along tunnels[C]// Edz Workshop—Designing the Excavation Distrubed Zone for A Nuclear Repository in Hard Rock, Canadian Nuclear Society. 1996. [28] Emsley S, Olsson O, Stenberg L, et al. ZEDEX - a study of damage and disturbance from tunnel excavation by blasting and tunnel boring[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 1997. [29] Lars O Ericsson, Petra Brinkhoff, Gunnar Gustafson, et al. Hydraulic features of the excavation disturbed zone—Laboratory investigations of samples taken from the Q- and S-tunnels at ASPO HRL[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2009. [30] Modesto Montoto, Angel Rodriguez Rey, Angel Martínez Nistal, et al. Fractographic characterization by quantitative microscopy of the excavation disturbance caused by boring of the experimental full scale deposition holes in the research tunnel at Olkiluoto[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 1999. [31] Jorma Autio, Hanna Malmlund,Maatit Kauppi, et al. Study of rock damage caused by tunnel boring at ASPO hard rock laboratory[R]. Olkiluoto: Posiva Oy, 2004. [32] Siitarikauppi, Ikonen, Lamminmaki, et al. Investigation of excavation damage zone by PMMA autoradiography method on samples from ONKALO facility at Olkiluoto[R]. Olkiluoto: Posiva Oy, 2009. [33] Mats Olsson, Swebrec, Ingemar Markstrom, et al. Examination of the excavation damaged zone in the TASS tunnel[R]. ASPO HRL. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2009. [34] Walton G, Lato M, Anschütz H, et al. Non-invasive detection of fractures, fracture zones, and rock damage in a hard rock excavation—Experience from the Äspö hard rock laboratory in Sweden[J]. Engineering Geology, 2015, 196:210-221. [35] Ericsson Lars O, Thpörn Johan, Christiansson, et al. A demonstration project on controlling and verifying the excavation damaged zone—Experience from the Äspö hard rock laboratory[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2014. [36] Martin Jonsson, Ann Backstrom, Quanhong Feng, et al. Studies of factors that affect and controls the excavation damaged/disturbed zone [R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2009. [37] Harald Hokmark, Billy Falth, Clay Technology AB,et al. T-H-M couplings in rock-Overview of results of importance to the SR-Can safety assessment [R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2006. [38] Autio J, Gribi P, Johnson L, et al. Effect of excavation damaged zone on gas migration in a KBS-3H type repository at Olkiluoto[J]. Physics & Chemistry of the Earth Parts A/b/c, 2005, 31(10):649-653. [39] Laaksoharju M, Geopoint A B, Maria Gimeno, et al. Hydrogeochemical and microbiological effects on fractures in the excavation damaged zone (EDZ)[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2009. [40] Hudson J A, Stephansson O, Andersson J. Guidance on numerical modelling of thermo-hydro-mechanical coupled processes for performance assessment of radioactive waste repositories[J]. International Journal of Rock Mechanics & Mining Sciences, 2005, 42(5-6):850-870. [41] Fairhurst C, Gera F, Gnirk P, et al. The international stripa project: An overview[J]. Tunnelling & Underground Space Technology, 1993, 8(3):315-343. [42] Will Pettitt, Calum Baker. Acoustic emission and ultrasonic monitoring during the excavation of deposition holes in the prototype repository[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 1999. [43] Christer J, Svensk A, Kärnbränslehantering A B. Rock mass response to coupled mechanical thermal loading: Äspö pillar stability experiment, Sweden[R]. Soil & Rock Mechanics, 2007. [44] Seppo Mellanen, Lasse Koskinen, Pirjo Hella, et al. EDZ programme, EDZ studies in ONKALO 2007—2008[R]. W Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2009. [45] Sanna Mustonen, Juhani Norokallio, Seppo Mellanen, et al. EDZ09 project and related EDZ studies in ONKALO 2008—2010[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2010. [46] Siren T, Hakala M, Valli J, et al. In situ, strength and failure mechanisms of migmatitic gneiss and pegmatitic granite at the nuclear waste disposal site in Olkiluoto, Western Finland[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 79:135-148. [47] Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8):1 329-1 364. [48] Hazzard J F, Young R P. Dynamic modelling of induced seismicity[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8):1 365-1 376. [49] Shen B, Stephansson O, Rinne M,et al. FRACOD modeling of rock fracturing and permeability change in excavation-damaged zones[J]. International Journal of Geomechanics, 2010, 11(4), 302-313. [50] Lönnqvist M, Hökmark H. Thermal, mechanical and thermo-mechanical assessment of the rock mass surrounding SKB’s prototype repository at Äspö HRL[J]. Rock Mechanics and Rock Engineering, 2016, 49(4):1 123-1 142. [51] 周辉, 冯夏庭. 岩石应力-水力-化学耦合过程研究进展[J]. 岩石力学与工程学报, 2006, 25(4):855-864. ZHOU Hui, FENG Xiating. Advances in coupled mechanical-hydro-chemical processes in rocks[J]. Chinese Journal of Rock Mechanics & Engineering, 2006, 25(4):855-864. [52] Tsang C F, Stephansson O, Jing L, et al. DECOVALEX Project: from 1992 to 2007[J]. Environmental Geology, 2009, 57(6):1 221-1 237. [53] Jens T.Birkholzer. DECCVALEX—2019:The current project phase(2016—2019)[EB/OL]https://decovalex.org/overview.html,2019. [54] 张春生, 褚卫江, 侯靖, 等. 锦屏二级水电站引水隧洞大型原位试验研究 I—试验方案[J]. 岩石力学与工程学报, 2014, 33(8): 1 691-1 701. ZHANG Chunsheng,CHU Weijiang,HOU Jing, et al. In-situ test on diversion tunnel at jinping II hydropower station I—test design[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1 691-1 701. [55] 严鹏, 卢文波, 陈明, 等. 深部岩体开挖方式对损伤区影响的试验研究[J]. 岩石力学与工程学报, 2011, 30(6): 1 097-1 106. YAN Peng, LU Wenbo, CHEN Min, et al. In-situ test research on influence of excavation method on induced damage zone in deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1 097-1 106. [56] 严鹏,卢文波,陈明,等. TBM 和钻爆开挖条件下隧洞围岩损伤特性研究[J]. 土木工程学报,2009,42(11): 121-128. YAN Peng, LU Wenbo, CHEN Min, et al. Study of the dam age characteristics of surrounding rocks for tunnels constructed using TBM and drill and blast [J]. China Civil Engineering Journal, 2009,42(11): 121-128. [57] 卢广亮,赵晓豹,龚秋明,等. TBM隧道围岩损伤区范围及渗透特性研究[J]. 高校地质学报,2017,(1):165-171. LU Guangliang, ZHAO Xiaobao, GONG Qiuming, et al. Study of the range and permeability characteristics of excavation-damaged zone of TBM tunnel[J]. Geological Journal of China Universities,2017,(1):165-171. [58] 郭亮, 李俊才, 张志铖, 等. 地质雷达探测偏压隧道围岩松动圈的研究与应用[J]. 岩石力学与工程学报, 2011 (S1): 3 009-3 015. GUO Liang,LI Juncai, ZHANG Zhicheng, et al. Research on surrounding rock loose zone of tunnel under unsymmetrical loading with ground penetrating radar and its application[J]. Chinese Journal of Rock Mechanics & Engineering, 2011 (S1): 3 009-3 015. |