[1] Ichitsubo H, Yamada Y, Shimo M, et al. Development of a radon-aerosol chamber at nirs-general design and aerosol performance [J]. Journal of Aerosol Science, 2004, 35(2): 217-232. [2] Lu W, Howarth AT, Adam N, et al. Modelling and measurement of airflow and aerosol particle distribution in a ventilated two-zone chamber [J]. Building and Environment, 1996, 31(5): 417-423. [3] Lai ACK.Particle deposition indoors: a review [J]. Indoor Air, 2002, 12(4): 211-214. [4] Nazaroff WW. Indoor particle dynamics [J]. Indoor Air, 2004, 14(s7): 175-183. [5] Park S, Kim H, Han Y, et al. Wall loss rate of polydispersed aerosols [J]. Aerosol Science & Technology, 2001, 35(3): 710-717. [6] Jamriska M, Morawska L. Quantitative assessment of the effect of surface deposition and coagulation on the dynamics of submicrometer particles indoors [J]. Aerosol Science & Technology, 2003, 37(5): 425-436. [7] Kim D, Hong S, Kim Y, et al. Deposition and coagulation of polydisperse nanoparticles by brownian motion and turbulence [J]. Journal of Aerosol Science, 2006, 37(12): 1 781-1 787. [8] Schnell M, Cheun C, Leung C. Investigation on the coagulation and deposition of combustion particles in an enclosed chamber with and without stirring [J]. Journal of Aerosol Science, 2006, 37(11): 1 581-1 595. [9] Hinds WC. Aerosol technology: properties, behavior, and measurement of airborne particles[M]. Wiley-interscience, 1999. [10] Lai AC, Nazarof WW. Modeling indoor particle deposition from turbulent flow onto smooth surfaces[J]. Journal of Aerosol Science, 2000, 31(4): 463-476. [11] Kim D, Park S, Song Y, et al. Brownian coagulation of polydisperse aerosols in the transition regime[J]. Journal of Aerosol Science, 2003, 34(7): 859-868. |