[1] Bogdanovic B, Solari E L, Villagran Asiares A, et al. PET/Mr technology: advancement and challenges[J]. Seminars in Nuclear Medicine, 2022, 52(3): 340-355. [2] Zaidi H, Del Guerra A. An outlook on future design of hybrid PET/MRI systems[J]. Medical Physics, 2011, 38(10): 5667-5689. [3] Vandenberghe S, Marsden P K. PET-MRI:A review of challenges and solutions in the development of integrated multimodality imaging[J]. Physics in Medicine&Biology, 2015, 60(4): 115-154. [4] Rammohan N, Randall J W, Yadav P. History of technological advancements towards MR-Linac:The future of image-guided radiotherapy[J]. Journal of Clinical Medicine, 2022, 11(16): 4730. [5] Chin S, Eccles C L, McWilliam A, et al. Magnetic resonance-guided radiation therapy: A review[J]. Journal of Medical Imaging and Radiation Oncology, 2020, 64(1): 163-177. [6] Raaymakers B W, Raaijmakers A J E, Lagendijk J J W. Feasibility of MRI guided proton therapy: Magnetic field dose effects[J]. Physics in Medicine and Biology, 2008, 53(20): 5615-5622. [7] Oborn B M, Dowdell S, Metcalfe P E, et al. Future of medical physics: Real-time MRI-guided proton therapy[J]. Medical Physics, 2017, 44(8): e77-e90. [8] PENG Bj, Walton J H, Cherry S R, et al. Studies of the interactions of an MRI system with the shielding in a combined PET/MRI scanner[J]. Physics in Medicine&Biology, 2010, 55(1): 265-280. [9] BIAN Wanyu, LI Panfeng, ZHENG Mengyao, et al. A review of electromagnetic elimination methods for Low-Field portable MRI scanner[C]//2024 5th International Conference on Machine Learning and Computer Application (ICMLCA):IEEE, 2024: 614-618. [10] Ishiyama A, Hondoh M, Ishida N, et al. Optimal design of MRI magnets with magnetic shielding[J]. IEEE Transactions on Magnetics, 1989, 25(2): 1885-1888. [11] YANG R, ZHENG J, WANG Y, et al. An absorbing radio frequency shield to reduce RF heating induced by deep brain stimulator during 1.5-T MRI[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(6): 1726-1732. [12] Gross-Weege N, Dey T, Gebhardt P, et al. Characterization methods for comprehensive evaluations of shielding materials used in an MRI[J]. Medical Physics, 2018, 45(4): 1415-1424. [13] Ahn C B, Cho Z H. Analysis of the eddy-current induced artifacts and the temporal compensation in nuclear magnetic resonance imaging[J]. IEEE Transactions on Medical Imaging, 1991, 10(1): 47-52. [14] Jezzard P, Barnett A S, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging[J]. Magnetic Resonance in Medicine, 1998, 39(5): 801-812. [15] Wilm B J, Barmet C, Pavan M, et al. Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations[J]. Magnetic Resonance in Medicine, 2011, 65(6): 1690-1701. [16] Truhn D, Kiessling F, Schulz V. Optimized RF shielding techniques for simultaneous PET/Mr[J]. Medical Physics, 2011, 38(7): 3995-4000. [17] Fahy S. Electromagnetic screening by metals[J]. American Journal of Physics, 1988, 56(11): 989-992. [18] Berneking A, Trinchero R, HA Y, et al. Design and characterization of a gradient-transparent RF copper shield for PET detector modules in hybrid MR-PET imaging[J]. IEEE Transactions on Nuclear Science, 2017, 64(5): 1118-1127. [19] KANG J, Choi Y, HONG K J, et al. Characterization of cross-compatibility of small animal insertable PET and MRI[C]//Nuclear Science Symposium Conference Record(NSS/MIC).IEEE, 2009: 3816-3821. [20] Judenhofer M S, Wehrl H F, Newport D F, et al. Simultaneous PET-MRI: A new approach for functional and morphological imaging[J]. Nature Medicine, 2008, 14(4): 459-465. [21] Lee B J, Watkins R D, CHANG Cm, et al. Low eddy current RF shielding enclosure designs for 3T Mr applications[J]. Magnetic Resonance in Medicine, 2018, 79(3): 1745-1752. [22] Keith J M, Janda N B, King J A, et al. Shielding effectiveness density theory for carbon fiber/nylon 6,6 composites[J]. Polymer Composites, 2005, 26(5): 671-678. [23] Heiser J A, King J A, Konell J P, et al. Shielding effectiveness of carbon-filled nylon 6,6[J]. Polymer Composites, 2004, 25(4): 407-416. [24] Düppenbecker P M, Wehner J, Renz W, et al. Gradient transparent RF housing for simultaneous PET/MRI using carbon fiber composites[C]//2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC):IEEE, 2012: 3478-3480. [25] PENG Boj, WU Yibao, Cherry S R, et al. New shielding configurations for a simultaneous PET/MRI scanner at 7T[J]. Journal of Magnetic Resonance (San Diego, Calif. : 1997), 2014, 239: 50-56. [26] Weissler B, Gebhardt P, Dueppenbecker P M, et al. A digital preclinical PET/MRI insert and initial results[J]. IEEE Transactions on Medical Imaging, 2015, 34(11): 2258-2270. [27] Weissler B, Gebhardt P, Lerche C W, et al. Mr compatibility aspects of a silicon photomultiplier-based PET/RF insert with integrated digitisation[J]. Physics in Medicine and Biology, 2014, 59(17): 5119-5139. [28] Weissler B. Digital PET/MRI for preclinical applications[D].PhD thesis,Dissertation,RWTH Aachen, 2016. [29] Yoon H S, Ko G B, Kwon S I, et al. Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner[J]. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine, 2012, 53(4): 608-614. [30] Hamamura M J, HA S, Roeck W W, et al. Development of an MR-compatible SPECT system(MRSPECT)for simultaneous data acquisition[J]. Physics in Medicine and Biology, 2010, 55(6): 1563-1575. [31] Jehenson P, Westphal M, Schuff N. Analytical method for the compensation of eddy-current effects induced by pulsed magnetic field gradients in NMR systems[J]. Journal of Magnetic Resonance (1969), 1990, 90(2): 264-278. [32] Favazza C P, King D M, Edmonson H A, et al. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging:experimental evaluation[J]. Medical Devices (Auckland, N.Z.), 2014, 7: 363-370. [33] Chang, Qiru, GUO Shaoyun, ZHANG X L,et al. Radiation shielding polymer composites:Ray-interaction mechanism,structural design,manufacture and biomedical applications[J]. Materials&Design, 2023, 233(9): 112253. [34] CHEN Zhenping, ZHANG Zhenyu, XIE Jinsen, et al. Multi-objective optimization strategies for radiation shielding design with genetic algorithm[J]. Computer Physics Communications, 2021, 260: 107267. [35] Okafor, Emeka C, Okonkwo U C, et al. Trends in reinforced composite design for ionizing radiation shielding applications:a review[J]. Journal of Materials Science, 2021, 56: 11631-11655. [36] More C V, Alsayed Z, Badawi M S, et al. Polymeric composite materials for radiation shielding: A review[J]. Environmental Chemistry Letters, 2021, 19(3): 2057-2090. [37] Bijanu A, Arya R, Agrawal V, et al. Metal-polymer composites for radiation protection: A review[J]. Journal of Polymer Research, 2021, 28(10): 392. [38] YANG K, CHEN H, HAN Z, et al. Bio-inspired multifunctional high-performance electromagnetic shielding coatings resistant to extreme space environments[J]. The Innovation Materials, 2023, 1(1): 100010. [39] Jinia A J,Clarke S D, Moran J M, et al. Intelligent radiation:A review of machine learning applications in nuclear and radiological sciences[J]. Annals of Nuclear Energy, 2024, 201(15): 110444. [40] Demir E, Candan Z, YAN N, et al. Green material for radiation shielding: An Overview[M]//Emerging Nanomaterials:Opportunities and challenges in forestry sectors. Springer, Cham, 2022: 299-336. |