[1] Sickafus K E, Larson A C, YU N, et al. Cation disorder in high dose, neutron-irradiated spinel[J]. Journal of Nuclear Materials, 1995, 219: 128-134. [2] YU Ning, Sickafus K, Michael Nastasi. First observation of amorphization in single-crystal MgAl2O4 spinel[J]. Philosophical Magazine Letters, 1994, 70(4): 235-240. [3] Zinkle S J, Matzke H J, Skuratov V A. Microstructure of swift heavyion irradiated MgAl2O4 spinel[J]. MRS Online Proceedings Library, 1998, 540(1): 299-304. [4] Ishimaru M, Afanasyevcharkin I V, Sickafus K E. Ion-beam-induced spinel-to-rocksalt structural phase transformation in MgAl2O4[J]. Applied Physics Letters, 2000, 76(18): 2556-2558. [5] Baldinozzi G, Simeone D, Gosset D, et al. Why ion irradiation does not lead to the same structural changes in normal spinels ZnAl2O4, MgAl2O4 and MgCr2O4?[J]. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions With Materials and Atoms, 2008, 266(12/13): 2848-2853. [6] SHEN T D, FENG Shiha, TANG Ming, et al. Enhanced radiation tolerance in nanocrystalline MgGa2O4[J]. Applied Physics Letters, 2007, 90(26): 263115-263118. [7] WANG Lumin, GONG Weilang, WANG Shixin, et al. Comparison of ion-beam irradiation effects in X2YO4 compounds[J]. Journal of the American Ceramic Society, 1999, 82(12): 3321-3329. [8] XU P, TANG M, Nino J C. In situ studies of ion irradiated inverse spinel compound magnesium stannate (Mg2SnO4)[J]. Journal of Nuclear Materials, 2009, 389(3): 410-415. [9] Uberuaga B P, TANG Ming, JIANG Chao, et al. Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores[J]. Nature Communications, 2015, 6: 8750. [10] YU Ning, Devanathan R, Sickafus K E, et al. Radiation-induced phase transformations in MgAl2O4 spinel[J]. Journal of Materials Research, 1997, 12(7): 1766-1770. [11] Quentin A, Monnet I, Gosset D, et al. Amorphisation of ZnAl2O4 spinel under heavy ion irradiation[J]. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions With Materials and Atoms, 2009, 267(6): 980-982. [12] O′Quinn E C, Shamblin J, Perlov B, et al. Inversion in Mg1-xNixAl2O4 spinel: new insight into local structure[J]. Journal of the American Chemical Society, 2017, 139(30): 10395-10402. [13] Zinkle S J, Kinoshita C. Defect production in ceramics[J]. Journal of Nuclear Materials, 1997, 251: 200-217. [14] 温娟. δ相及纳米烧绿石氧化物的离子束辐照效应研究[D]. 兰州: 兰州大学, 2016. [15] TANG Ming, Valdez J A, WANG Yongqiang, et al. Ion irradiation-induced crystal structure changes in inverse spinel MgIn2O4[J]. Scripta Materialia, 2016, 125: 10-14. [16] Sickafus K E. Comment on ‘Order-disorder phase transition induced by swift ions in MgAl2O4 and ZnAl2O4 spinels’ by D. Simeone et al., J. Nucl. Mater. 300 (2002) 151-160[J]. Journal of Nuclear Materials, 2003, 312(1): 111-123. [17] Lazzeri M, Thibaudeau P. Ab initio Raman spectrum of the normal and disordered MgAl2O4 spinel[J]. Physical Review B, 2006, 74(14): 140301. [18] Dwibedi D, Avdeev M, Barpanda P. Role of fuel on cation disorder in magnesium aluminate spinel prepared by combustion synthesis[J]. Journal of the American Ceramic Society. American Ceramic Society, 2015, 98(9): 2908-2913. [19] LIU Chenguang, LI Yuhong, SHI Tan, et al. Oxygen defects stabilize the crystal structure of MgAl2O4 spinel under irradiation[J]. Journal of Nuclear Materials, 2019, 527: 151830. [20] Afanasyev-Charkin I V. Effects of He2+ion implantation on optical and structural properties of MgAl2O4[J]. Vacuum, 2000, 58(1): 2-9. [21] Ullmaier H. Introd uctory Remarks-Helium in Metals[J]. Radiation Effects, 1983, 78(4): 1-10. [22] Adams J B, Wolfer W G. Formation energies of helium-void complexes in nickel[J]. Journal of Nuclear Materials, 1989, 166(3): 235-242. [23] LI Y H, Uberuaga B P, Jiang C, et al. Role of antisite disorder on preamorphization swelling in titanate pyrochlores[J]. Physical Review Letters, 2012, 108(19): 195504. |