[1] 胡文超, 赵传奇, 毕金生, 等. 压水堆一回路腐蚀产物源项钴的研究[C]//中国核学会.中国核科学技术进展报告(第五卷)——中国核学会2017年学术年会论文集第5册(核材料分卷、辐射防护分卷). 威海: 环境保护部核与辐射安全中心, 2017: 6. [2] 郭行, 金卫阳. 压水堆核电厂源项控制实践与改进[J]. 辐射防护, 2021, 41(3): 248-253. GUO Heng, JIN Weiyang. Practice and improvement of source term control in a PWR nuclear power plant[J]. Radiation Protection, 2021, 41(3): 248-253. [3] 杜虎. 氧化钴生产废水中钴去除方法的研究[D]. 长沙: 中南大学, 2013. [4] 文贵荣, 杜虎. 含钴废水处理方法及其研究进展[J]. 工业用水与废水, 2014(5): 5-9. WEN Guirong, DU Hu. Research progress on cobaIt-containing wastewater treatment[J]. Industrial Water & Wastewater, 2014(5): 5-9. [5] HU Wei, LU Songhua, SONG Wencheng, et al. Competitive adsorption of U(VI) and Co(II) on montmorillonite: A batch and spectroscopic approach[J]. Applied Clay Science, 2018, 157: 121-129. [6] 张之介, 邓勇, 赵增迎, 等. 蒙脱石对Co2+吸附机理和性能研究[J]. 环境科学与技术, 2013, 36(S1): 167-170. ZHANG Zhijie, DENG Yong, ZHAO Zengying, et al. Adsorption mechanism and performance of cobalt ion bymontmorillonite[J]. Environmental Science & Technology, 2013, 36(S1): 167-170. [7] RAO G B, Prasad M K, Murthy C V R. Cobalt(II) removal from aqueous solutions by adsorption onto molecular sieves[J]. International Journal of Chemistry and Science, 2015, 13: 1893-1910. [8] Sellaoui L, Hessou E P, Badawi M, et al. Trapping of Ag+, Cu2+, and Co2+ by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation[J]. Chemical Engineering Journal, 2021, 420(2): 127712. [9] Smičiklas I, Dimović S, Plećaš I, et al. Removal of Co2+ from aqueous solutions by hydroxyapatite[J]. Water Research, 2006, 40(12): 2267-2274. [10] 宋丽华, 安帅, 王海坡. 油页岩对钴离子的吸附性能研究[J]. 地质与资源, 2020, 29(1): 101-105. [11] JIN Yanping, WU Yunhai, CAO Julin, et al. Adsorption behavior of Cr(VI),Ni(II),and Co(II) onto zeolite 13x[J]. Desalination and Water Treatment, 2015, 54(2): 511-524. [12] Samieifard R, Landi A, Pourreza N. Adsorption of Cd, Co and Zn from multi-ionic solutions onto Iranian sepiolite isotherms[J]. Central Asian Journal of Environmental Science and Technology Innovation, 2021, 2(3): 102-118. [13] Benaissa H, Nasrallah N, Abdi A, et al. Investigation on removing of 60Co2+ radionuclide from radioactive waste water by Fe(III)-modified Algerian bentonite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(3): 1497-1511. [14] Malima N M, Owonubi S J, Lugwisha E H, et al. Thermodynamic, isothermal and kinetic studies of heavy metals adsorption by chemically modified Tanzanian Malangali kaolin clay[J]. International Journal of Environmental Science and Technology, 2021, 18(10): 3153-3168. [15] Nassar N N. Kinetics, equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nanoadsorbents[J]. The Canadian Journal of Chemical Engineering, 2012, 90(5): 1231-1238. [16] Le N C, Van P D. Sorption of Lead(II),cobalt(II) and Copper(II) ions from aqueous solutions by γ-MnO2 nanostructure[J]. Advances in Natural Sciences-Nanoscience and Nanotechnology, 2015, 6(2): 025014. [17] Khezami L, Taha K K, Modwi A. Efficient removal of cobalt from aqueous solution by zinc oxide nanoparticles: kinetic and thermodynamic studies[J]. Zeitschrift Für Naturforschung A, 2017, 72(5): 409-418. [18] El-Sayed M, Eshaq G, ElMetwally A E. Adsorption of heavy metals from aqueous solutions by Mg-Al-Zn mingled oxides adsorbent[J]. Water Science and Technology, 2016, 74(7): 1644-1657. [19] Granados-Correa F, Bulbulian S. Co(II) adsorption in aqueous media by a synthetic Fe-Mn binary oxide adsorbent[J]. Water, Air, & Soil Pollution, 2012, 223(7): 4089-4100. [20] Al Abdullah J, Al Lafi A G, Al Masri W, et al. Adsorption of Cesium, cobalt, and Lead onto a synthetic Nano manganese oxide: behavior and mechanism[J]. Water, Air, & Soil Pollution, 2016, 227(7): 241. [21] Shakerian K F, Esmaeili H. Synthesis of CaO/Fe3O4 magnetic composite for the removal of Pb(II) and Co(II) from synthetic wastewater[J]. Journal of the Serbian Chemical Society, 2018, 83(2): 237-249. [22] Borai E H, Breky M M E, Sayed M S, et al. Synthesis, characterization and application of titanium oxide nanocomposites for removal of radioactive Cesium, cobalt and Europium ions[J]. Journal of Colloid and Interface Science, 2015, 450: 17-25. [23] Rahman M M, Khan S B, Marwani H M, et al. Selective divalent cobalt ions detection using Ag2O3-ZnO nanocones by ICP-OES method for environmental remediation[J]. PLoS One, 2014, 9(12): e114084. [24] 胡军, 周跃明, 梁喜珍, 等. 纳米金属氧化物吸附金属离子的研究现状[J]. 广东化工, 2010, 37(5): 21-22. [25] 张波波, 张文娟, 杜雪岩, 等. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102. ZHANG Bobo, ZHANG Wenjuan, DU Xueyan, et al. Research progress in adsorption of heavy metal ions in wastewater by iron-based magnetic nanomaterial[J]. Journal of Materials Engineering, 2020, 48(7): 93-102. [26] ZHUANG Shuting, YIN Yanan, WANG Jianlong. Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation[J]. Nuclear Engineering and Technology, 2018, 50(1): 211-215. [27] Tofan L, Teodosiu C, Paduraru C, et al. Cobalt (II) removal from aqueous solutions by natural hemp fibers: Batch and fixed-bed column studies[J]. Applied Surface Science, 2013, 285(Part A): 33-39. [28] Foroutan R, Esmaeili H, Abbasi M, et al. Adsorption behavior of Cu(II) and Co(II)using chemically modified marine algae[J]. Environmental Technology, 2018, 39(21): 2792-2800. [29] 张伟. 胺化改性磁性O-羧甲基壳聚糖吸附Co(Ⅱ)的研究[J]. 工业水处理, 2022, 42(6): 180-186. ZHANG Wei. Modification of magnetic O-carboxymethyl chitosan by amination reaction and its Co(Ⅱ)adsorption properties[J]. Industrial Water Treatment, 2022, 42(6): 180-186. [30] Bhatnagar A, Minocha A K, Sillanpáá M. Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent[J]. Biochemical Engineering Journal, 2010, 48(2): 181-186. [31] 黄燕. 功能化生物材料对重金属离子吸附性能的研究[D]. 合肥: 合肥工业大学, 2013. [32] Abdelbasir S M, El-Shewaikh A M, El-Sheikh S M, et al. Novel modified chitosan nanocomposites for Co(II) ions removal from industrial wastewater[J]. Journal of Water Process Engineering, 2021, 41: 102008. [33] Rengaraj S, Yeon K H, Kang S Y, et al. Studies on adsorptive removal of Co(II), Cr(III) and Ni(II) by IRN77 cation-exchange resin[J]. Journal of Hazardous Materials, 2002, 92(2): 185-198. [34] Rengaraj S, Moon S H. Kinetics of adsorption of Co(II) removal from water and wastewater by ion exchange resins[J]. Water Research, 2002, 36(7): 1783-1793. [35] Hamed M M, Rizk S E, Nayl A A. Adsorption kinetics and modeling of Gadolinium and cobalt ions sorption by an ion-exchange resin[J]. Particulate Science and Technology, 2016, 34(6): 716-724. [36] XIONG Chunhua, FENG Yujie, YAO Caiping, et al. Removal of Co(II) from aqueous solutions by NKC-9 strong acid resin[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(6): 1141-1147. [37] Wassel M A, Swelam A A, Awad M M B, et al. Studies on the removal of Cobalt(Co2+) and Nickel(Ni2+) ions from aqueous solution by using macroporous cation exchange resin[J]. International Journal of Environment, 2014, 3(1): 42-53. [38] Gasser M S, El Sherif E, Mekhamer H S, et al. Assessment of cyanex 301 impregnated resin for its potential use to remove cobalt from aqueous solutions[J]. Environmental Research, 2020, 185: 109402. [39] Naushad M, ALOthman Z A, Sharma G, et al. Kinetics, isotherm and thermodynamic investigations for the adsorption of Co(II) ion onto crystal violet modified amberlite IR-120 resin[J]. Ionics, 2015, 21(5): 1453-1459. [40] Alguacil F J. The removal of toxic metals from liquid effluents by ion exchange resins.Part XI:cobalt(II)/H+/Lewatit TP260[J]. Revista de Metalurgia, 2019, 55(4): e154. [41] Polyanskii N, Tulupov P. Thermal stability of cation-exchange resins[J]. Russian Chemical Reviews, 1971, 40(12): 1030. [42] 郭生伟, 吴澜尔, 韩凤兰, 等. 阳离子树脂对污酸中重金属离子的吸附行为研究[C]//2013中国环境科学学会学术年会论文集(第五卷).昆明:北方民族大学材料科学与工程学院,2013:5. [43] Pillay K K S. A review of the radiation stability of ion exchange materials[J]. Journal of Radioanalytical and Nuclear Chemistry, 1986, 102(1): 247-268. [44] Anoop K, Krishnana T S, Anirudhan. Kinetic and equilibrium modelling of cobalt(II) absorption onto bagasse pith based Sulphu-Rised activated carbon[J]. Chemical Engineering Journal, 2008, 137(2): 257-264. [45] Abbas M, Kaddour S, Trari M. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(3): 745-751. [46] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240. [47] ZHU Yanwu, Murali S, CAI Weiwei, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. [48] FANG Fang, KONG Lingtao, HUANG Jiarui, et al. Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite[J]. Journal of Hazardous Materials, 2014, 270: 1-10. [49] SONG W, HU J, ZHAO Y, et al. Efficient removal of cobalt from aqueous solution using β-cyclodextrin modified graphene oxide[J]. RSC Advances, 2013, 3(24): 9514-9521. [50] Dehghani M H, Yetilmezsoy K, Salari M, et al. Adsorptive removal of cobalt(II) from aqueous solutions using multi-walled carbon nanotubes and γ-alumina as novel adsorbents: Modelling and optimization based on response surface methodology and artificial neural network[J]. Journal of Molecular Liquids, 2020, 299: 112154. [51] 杨娟娟. 炭材料对钴的吸附行为研究[D]. 淄博: 山东理工大学, 2015. [52] 廖贵朗, 郑继明, 李义兵, 等. β-萘酚改性活性炭及其对钴吸附性能的研究[J]. 功能材料, 2017, 48(11): 11127-11132. LIAO Guilang, ZHENG Jiming, LI Yibing, et al. Study on activated carbon modified by beta naphthol and its adsorption properties of cobalt[J]. Journal of Functional Materials, 2017, 48(11): 11127-11132. [53] Thilagavathy P, Kinetics S T. Isotherms and equilibrium study of Co(II) adsorption from single and binary aqueous solutions by Acacia nilotica leaf carbon[J]. Chinese Journal of Chemical Engineering, 2014, 22(11/12): 1193-1198. [54] Kakavandi B, Raofi A, Peyghambarzadeh S M, et al. Efficient adsorption of cobalt on chemical modified activated carbon: characterization, optimization and modeling studies[J]. Desalination and Water Treatment, 2018, 111: 310-321. [55] Hamed M M, Ali M M S, Holiel M. Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: Equilibrium, kinetic and thermodynamic studies[J]. Journal of Environmental Radioactivity, 2016, 164: 113-124. [56] Osińska M. Removal of Lead(II),Copper(II),cobalt(II) and nickel(II) ions from aqueous solutions using carbon gels[J]. Journal of Sol-gel Science and Technology, 2017, 81(3): 678-692. [57] Gómez J M, Díez E, Bernabé I, et al. Effective adsorptive removal of cobalt using mesoporous carbons synthesized by silica gel replica method[J]. Environmental Processes, 2018, 5(2): 225-242. [58] Demirbas E. Adsorption of cobalt(II) ions from aqueous solution onto activated carbon prepared from hazelnut shells[J]. Adsorption Science & Technology, 2003, 21(10): 951-963. [59] SUN Yubing, WANG Qi, CHEN Changlun, et al. Interaction between Eu(III)and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques[J]. Environmental Science & Technology, 2012, 46(11): 6020-6027. [60] Romanchuk A Y, Slesarev A S, Kalmykov S N, et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics, 2013, 15(7): 2321-2327. [61] 刘红娟, 吴仁杰, 谢水波, 等. 氧化石墨烯及其复合材料对水中放射性核素的吸附[J]. 材料工程, 2019, 47(10): 22-32. LIU Hongjuan, WU Renjie, XIE Shuibo, et al. Graphene oxide and its composites for adsorption of radionuclides in water[J]. Journal of Materials Engineering, 2019, 47(10): 22-32. [62] WENG Hanqin, ZHANG Peng, GUO Zifang, et al. Efficient and ultrafast adsorption of Rhenium by functionalized hierarchically mesoporous silica: a combined strategy of topological construction and chemical modification[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8249-8262. |