[1] 曾毅, 孙院军, 安耿, 等. 核反应堆用钼铼合金结构材料研究进展[J]. 粉末冶金技术, 2023, 41(4): 307-314. ZENG Yi, SUN Yuanjun, AN Geng, et al. Research progress of Mo-Re alloy structural materials used for nuclear reactors[J]. Power Metallurgy Technology, 2023, 41(4): 307-314. [2] LU H Y, TANG C B, LI Y M, et al. Simulation investigation on behavior evolutions of fuel element in heat pipe reactor[J]. Nuclear Power Engineering, 2019, 40(S2): 82-87. [3] 郑越, 卢可可, 袁炜, 等. B4C/6061Al复合材料在辐照环境中的老化行为[J]. 腐蚀与防护, 2020, 41(9): 45-49. ZHENG Yue, LU Keke, YUAN Wei, et al. Aging behavior of B4C/6061Al composite materials under irradiation conditions[J]. Corrosion & Protection, 2020, 41(9): 45-49. [4] 陈婉琦, 李馨楠, 李恺伦, 等. 钨在不同损伤程度氦离子辐照后的力学性能变化[J]. 机械工程材料, 2022, 46(4): 26-31. CHEN Wanqi, LI Xinnan, LI Kaklun, et al. Mechanical property changes of tungsten after helium ion irradiation with different damage degree[J]. Materials for Mechanical Engineering, 2022, 46(4): 26-31. [5] 张金钰, 屈启蒙, 王亚强, 等. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384. ZHANG Jinyu, QU Qimeng, WANG Yaqiang, et al. Research progress on irradiation effects and mechanical properties of metal/High-Entropy alloy nanostructured multilayers[J]. Acta Metallurgica Sinca, 2022, 58(11): 1371-1384. [6] FAN Z, Velisa G, JIN K, et al. Temperature-dependent defect accumulation and evolution in Ni-irradiated NiFe concentrated solid-solution alloy[J]. Journal of Nuclear Materials, 2019, 519: 1-9. [7] ZHANG Y W, Stocks G M, JIN K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys[J]. Nature Communications, 2015, 6: 8736. [8] DIAO H Y, FENG R, Dahmen K A, et al. Fundamental deformation behavior in high-entropy alloys: An overview[J]. Current Opinion in Solid State and Materials Science, 2017, 21(5): 252-266. [9] ZHANG S, Nordlund K, Djurabekova F, et al. Raditation damage buildup by athermal defect reactions in nickel and concentrated nickel alloys[J]. Materials Research Letters, 2017, 5(6): 433-439. [10] Granberg F, Nordlund K, Ulah M W, et al. Mechanism of raditon damage reduction in equiatomic multicomponent single phase alloys[J]. Physical Review Letters, 2016, 116(13): 135504. [11] Do H S, Lee B J. Origin of radiation resistance in multi-principal element alloys[J]. Scientific Reports, 2018, 8(1): 16015. [12] Stukowski A, Sadigh B, Erhart P, et al. Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations[J]. Modelling Simulation Materials Science and Engineering, 2009, 17(7): 075005. [13] 卢焘, 田新, 王继虎. δ相钚-镓合金自辐照损伤的分子动力学模拟[J]. 哈尔滨工程大学学报, 2022, 43(11): 1630-1635. LU Tao, TIAN Xin, WANG Jihu. Molecular dynamics simulation of the self-irradiation damage in δ plutonium-gallium alloy[J]. Journal of Harbin Engineering University, 2022, 43(11): 1630-1635. [14] Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications[M]. San Diego: Academic Press, 1996. [15] Mendelev M I, HAN S, Srolovitz D J, et al. Development of new interatomic potentials appropriate for crystalline and liquid iron[J]. Philosophical Magazine, 2003, 83(35): 3977-3994. [16] LU C Y, JIN K, Béland L K, et al. Direct observation of defect range and evolution in ion-irradiated single crystalline Ni and Ni binary alloys[J]. Scientific Reports, 2016, 6: 19994. [17] GAO F, Bacon D J, Flewitt P E J, et al. A molecular dynamics study of temperature effect on defect production by displacement cascades in α-iron[J]. Journal of Nuclear Materials, 1997, 249(1): 77-86. [18] Bacon D J, Calder A F, Gao F, et al. Computer simulation of defect production by displacement cascades in metals[J]. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions With Materials and Atoms, 1995, 102(1/4): 37-46. |