[1] 国家核安全局. 乏燃料后处理厂潜在事故的假设: HAF J0051[S]. 1995. [2] 黄树明, 纪运哲, 刘耸. 乏燃料后处理厂应急设施的可居留性分析[J]. 产业与科技论坛, 2018, 17(13): 68-70. [3] 吕丹, 杨晓伟, 汪世军,等. 国外乏燃料后处理设施爆炸事故的经验教训[J]. 科技导报, 2020, 38(07): 118-124. [4] U.S.NRC. Review of spent fuel reprocessing and associated accident phenomena[R]. NUREG/CR-7232. 2016. [5] IAEA.The radiological accident in the reprocessing plant at Tomsk[R]. Vienna: IAEA, 1998. [6] 吕丹, 高明媛, 刘斌斌,等. 国外核燃料后处理厂临界事故统计和分析[J]. 核安全, 2014, 13(01): 55-58. [7] 国家核安全局. 核燃料循环设施营运单位的应急准备和应急响应:HAD 002/07-2019[S]. 2019. [8] IAEA.Preparedness and response for a nuclear or radiological emergency:GSR Part 7[R]. Vienna: IAEA, 2015. [9] Ehrhardt J. The RODOS system: decision support for off-site emergency management in Europe[J]. Radiation Protection Dosimetry, 1997, 73(1-4): 35-40. [10] Bradley M M. NARAC: an emergency response resource for predicting the atmospheric dispersion and assessing the consequences of airborne radionuclides[J]. Journal of Environmental Radioactivity, 2007, 96(1-3): 116-121. [11] Kim M, Lee S. Reactor assessment and prognosis tool for nuclear power plants and its application strategies—A perspective[R]. 2017. [12] Kim D S, Sung K Y, Ahn K I. Systematic application of the atomCARE real-time plant information to support severe accident response activities[R]. 2010. [13] Chino M, Ishikawa H, Yamazawa H. SPEEDI and WSPEEDI: Japanese emergency response systems to predict radiological impacts in local and workplace areas due to a nuclear accident[J]. Radiation Protection Dosimetry, 1993, 50(2-4): 145-152. [14] 杨亚鹏, 张建岗, 汤荣耀,等. 集成化核电厂核应急指挥与决策支持系统开发[J]. 辐射防护, 2015, 35(05): 274-283. [15] 徐潇潇, 张建岗, 杨亚鹏,等. 基于实时操作干预水平的场外防护行动决策系统开发研究[J]. 环境科学与管理, 2018, 43(11): 51-56. [16] 薛宏磊. 生态环境部核与辐射突发事件评价及决策系统[J]. 绿色环保建材, 2019(2): 24-25. [17] ZHAO Y, ZHANG L, TONG J. Development of rapid atmospheric source term estimation system for AP1000 nuclear power plant[J]. Progress in Nuclear Energy, 2015, 81: 264-275. [18] 陈谦, 黄义超, 陶乃贵,等. 一种针对多机组事故的操作干预水平应急决策辅助系统[J]. 辐射防护, 2018, 38(5): 389-395. [19] WANG J, ZHANG L, QU J,et al. Rapid accident source term estimation (RASTE) for nuclear emergency response in high temperature gas cooled reactor[J]. Annals of Nuclear Energy, 2020, 147: 107654. [20] 贾林胜, 张建岗, 冯宗洋,等. 铀浓缩设施核应急实时评价系统开发[J]. 辐射防护, 2018, 38(06): 507-510. [21] Ramsdell J, Athey G, Rishel J. RASCAL 4: Description of models and methods[R]. United States Nuclear Regulatory Commission, 2012. [22] Hopper C M, Broadhead B L. An updated nuclear criticality slide rule[R].ORNL/EM-13322/V2. U.S.NRC, 1998. [23] ISO. Nuclear criticality safety-estimation of the number of fissions of a postulated criticality accident:ISO 16117-2013[S].2013. [24] Nuclear Energy Institute.Methodology for development of emergency action levels[R].Nuclear Energy Institute(NEI), 2008. [25] IAEA.Criteria for use in preparedness and response for a nuclear or radiological emergency[R]. Vienna: IAEA, 2011. |