[1] HAVRáNKOVá R. Biological effects of ionizing radiation [J]. Cas Lek Cesk, 2020, 159(7-8): 258-260. [2] Pasqual E, Bosch De Basea M, LóPez-Vicente M, et al. Neurodevelopmental effects of low dose ionizing radiation exposure: A systematic review of the epidemiological evidence [J]. Environ Int, 2020, 136: 105371. [3] Tapio S, Little M P, Kaiser J C, et al. Ionizing radiation-induced circulatory and metabolic diseases [J]. Environ Int, 2021, 146: 106235. [4] Lumniczky K, Impens N, Armengol G, et al. Low dose ionizing radiation effects on the immune system [J]. Environ Int, 2021, 149: 106212. [5] Limbad C, Oron T R, Alimirah F, et al. Astrocyte senescence promotes glutamate toxicity in cortical neurons [J]. PloS ONE, 2020, 15(1): e0227887. [6] DENG Z, HUANG H, WU X, et al. Distinct expression of various angiogenesis factors in mice brain after whole-brain irradiation by X-ray [J]. Neurochem Res, 2017, 42(2): 625-633. [7] Gorbunov N V, Kiang J G. Brain damage and patterns of neurovascular disorder after ionizing irradiation. complications in radiotherapy and radiation combined injury [J]. Radiat Res, 2021, 196(1):1-16. [8] Ramanan S, Kooshki M, Zhao W, et al. PPARalpha ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-kappaB and AP-1 pathways [J]. Free Radic Biol Med, 2008, 45(12): 1695-1704. [9] DING Z, ZHANG H, LV X F, et al. Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction [J]. Hum Brain Mapp, 2018, 39(1): 407-427. [10] Hladik D, Tapio S. Effects of ionizing radiation on the mammalian brain [J]. Mutat Res Rev Mutat Res, 2016, 770(Pt B): 219-230. [11] WANG Q Q, YIN G, HUANG J R, et al. Ionizing radiation-induced brain cell aging and the potential underlying molecular mechanisms [J]. Cells, 2021, 10(12):3570. [12] Kwon H S, Koh S H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes [J]. Transl Neurodegener, 2020, 9(1): 42. [13] Tang F R, Loke W K, Khoo B C. Postnatal irradiation-induced hippocampal neuropathology, cognitive impairment and aging [J]. Brain Dev, 2017, 39(4): 277-293. [14] Eriksson P, Buratovic S, Fredriksson A, et al. Neonatal exposure to whole body ionizing radiation induces adult neurobehavioural defects: Critical period, dose—Response effects and strain and sex comparison [J]. Behav Brain Res, 2016, 304: 11-19. [15] Buratovic S, Stenerlow B, Fredriksson A, et al. Neonatal exposure to a moderate dose of ionizing radiation causes behavioural defects and altered levels of tau protein in mice [J]. Neurotoxicology, 2014, 45: 48-55. [16] Gupta M, Mishra S K, Kumar B S, et al. Early detection of whole body radiation induced microstructural and neuroinflammatory changes in hippocampus: A diffusion tensor imaging and gene expression study [J]. J Neurosci Res, 2017, 95(4): 1067-1078. [17] WANG G, REN X, YAN H, et al. Neuroprotective effects of umbilical cord-derived mesenchymal stem cells on radiation-induced brain injury in mice [J]. Ann Clin Lab Sci, 2020, 50(1): 57-64. [18] Marzban H, Del Bigio M R, Alizadeh J, et al. Cellular commitment in the developing cerebellum [J]. Front Cell Neurosci, 2014, 8: 450. [19] Le Merre P, Ahrlund-richter S, Carlen M. The mouse prefrontal cortex: Unity in diversity [J]. Neuron, 2021, 109(12): 1925-1944. [20] Chiang C S, Mcbride W H, Withers H R. Radiation-induced astrocytic and microglial responses in mouse brain [J]. Radiother Oncol, 1993, 29(1): 60-68. [21] Betlazar C, Middleton R J, Banati R B, et al. The impact of high and low dose ionising radiation on the central nervous system [J]. Redox Biol, 2016, 9: 144-156. [22] Kalm M, Lannering B, Björk-Eriksson T, et al. Irradiation-induced loss of microglia in the young brain [J]. J Neuroimmunol, 2009, 206(1-2): 70-75. [23] Ladeby R, Wirenfeldt M, Garcia-Ovejero D, et al. Microglial cell population dynamics in the injured adult central nervous system [J]. Brain Res Rev, 2005, 48(2): 196-206. [24] Markarian M, Krattli R P, Baddour J D, et al. Glia-selective deletion of complement c1q prevents radiation-induced cognitive deficits and neuroinflammation [J]. Cancer Res, 2021, 81(7): 1732-1744. [25] ZHOU D, HUANG X, XIE Y, et al. Astrocytes-derived VEGF exacerbates the microvascular damage of late delayed RBI [J]. Neuroscience, 2019, 408: 14-21. [26] Carballo-quintáS M, Martínez-silva I, Cadarso-suárez C, et al. A study of neurotoxic biomarkers, c-fos and GFAP after acute exposure to GSM radiation at 900 MHz in the picrotoxin model of rat brains [J]. Neurotoxicology, 2011, 32(4): 478-494. [27] Brillaud E, Piotrowski A, De Seze R. Effect of an acute 900 MHz GSM exposure on glia in the rat brain: A time-dependent study [J]. Toxicology, 2007, 238(1): 23-33. [28] Loane D J, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated [J]. Exp Neurol, 2016, 275(Pt 3): 316-327. [29] Turnquist C, Harris B T, Harris C C. Radiation-induced brain injury: current concepts and therapeutic strategies targeting neuroinflammation [J]. Neurooncol Adv, 2020, 2(1): vdaa057. [30] Boyd A, Byrne S, Middleton R J, et al. Control of neuroinflammation through radiation-induced microglial changes [J]. Cells, 2021, 10(9):2381. |