[1] Naumenko A, Andrukhovich S, Kabanov V, et al. Autonomous NaI(Tl) gamma-ray spectrometer for in situ underwater measurements[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 908: 97-109. [2] 郑旻辉, 潘建明, 杨俊毅,等. 基于NaI(TI) 晶体的海水核辐射原位探测器可行性研究[J]. 核电子学与探测技术, 2013, 33(2): 183-187. ZHENG Minhui,PAN Jianming,YANG Junyi, et al. Feasibility Study of in Situ Detector of Marine Radioactivity Based on the NaI(Tl) Scintillator[J]. Nuclear Electronics & Detection Technology, 2013, 33(2): 183-187. [3] 曾志, 苏健, 衣宏昌, 等. 海水放射性监测装置研制及初步测试结果[J]. 辐射防护, 2013, 33(1): 46-48,53. ZENG Zhi, SU Jian, YI Hongchang, et al. Development of a seawater radioactivity monitoring system and its preliminary test results[J]. Radiation Protection, 2013, 33(1): 46-48,53. [4] MOSZYN'SKI M, NASSALSKI A, SYNTFELD-KAZ·UCH A, et al. Temperature dependences of LaBr3(Ce), LaCl3(Ce) and NaI(Tl) scintillators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 568(2): 739-751. [5] CHEN Y, LI J, ZHANG Y, et al. Gamma spectrum stabilization method based on nonlinear least squares optimization[J]. Applied Radiation and Isotopes, 2021, 169: 109515. [6] Mitra P, Roy A S, Verma A K, et al. Application of spectrum shifting methodology to restore NaI (Tl)-recorded gamma spectra, shifted due to temperature variations in the environment[J]. Applied Radiation and Isotopes, 2016, 107: 133-137. [7] QIU M, JIA W, HEI D, et al. Digital stabilization algorithm for the gamma spectra of scintillator detectors in PGNAA[J]. IEEE Transactions on Nuclear Science, 2021, 69(2): 113-117. [8] Ianakiev K D, Alexandrov B S, Littlewood P B, et al. Temperature behavior of NaI(Tl) scintillation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 607(2): 432-438. [9] Androulakaki E G, Kokkoris M, Tsabaris C, et al. In situ γ-ray spectrometry in the marine environment using full spectrum analysis for natural radionuclides[J]. Applied Radiation and Isotopes, 2016, 114: 76-86. [10] Samatov Z K, Stakhin A A, Fominykh V I. Stabilization of nuclear radiation spectra by the hardware and software correction[J]. Instruments and Experimental Techniques, 2007, 50(6): 772-777. [11] 陈宸, 吴桓. 便携式LaBr3(Ce) γ谱仪稳谱技术研究[J]. 核技术, 2021, 44(4): 43-50. CHEN Chen, WU Huan. Study on spectrum stabilization technique for a portable LaBr3(Ce) gamma spectrometer[J]. Nuclear Techniques, 2021, 44(4): 43-50. [12] 方登富, 李强, 唐智辉, 等. 海水就地γ谱仪能谱温漂修正研究[J]. 核电子学与探测技术, 2017, 37(6): 564-568. FANG Dengfu, LI Qiang, TANG Zhihui, et al. Study on temperature drift correction of energy spectrum from seawater in-situ γ-ray spectrometer[J]. Nuclear Electronics & Detection Technology, 2017, 37(6): 564-568. [13] 翟娟, 胡媛, 郭成, 等. 基于全谱特征的谱线漂移校正方法研究[J]. 核电子学与探测技术, 2017, 37(1): 81-84+94. ZHAI Juan, HU Yuan, Guo Cheng, et al. Study of spectrum drifting correction method based on whole spectrum characteristic[J]. Nuclear Electronics & Detection Technology, 2017, 37(1): 81-84+94. [14] 莫念, 王鑫, 王宇宙. 实验室高纯锗γ谱仪的“稳谱法”研究[J]. 核技术, 2021, 44(2): 55-58. MO Nian, WANG Xin, WANG Yuzhou. Study on “spectrum stabilization method” of laboratory high-purity germanium γ spectrometers[J]. Nuclear Techniques, 2021, 44(2): 55-58. [15] Vlachos D S. Self-calibration techniques of underwater gamma ray spectrometers[J]. Journal of Environmental Radioactivity, 2005, 82(1):21-32. [16] LOSKA L. A computer method of γ-ray spectra stabilization[J]. Applied radiation and isotopes, 1995, 46(9): 949-953. [17] WANG C, ZHANG Q, SUN Y, et al. A new numerical correction method for gamma spectra based on the system transformation theory of random signals[J]. Applied Radiation and Isotopes, 2021, 172: 109671. [18] 核工业标准化研究所. 碘化钠(铊)闪烁体和碘化钠(铊)闪烁探测器:GB/T 13182—2007[S]. 北京:中国标准出版社,2007. [19] 全国核仪器仪表标准化技术委员会.核辐射探测器环境条件与试验方法: GB/T 10263—2006[S]. 北京:中国标准出版社,2006. [20] Datar G, Vichare G, Selvaraj C, et al. Causes of the diurnal variation observed in gamma-ray spectrum using NaI(Tl) detector[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 207: 105369. [21] 张新军, 王世联, 李奇, 等. CTBT气溶胶γ能谱的能量漂移校正方法[J]. 原子能科学技术, 2018, 52(1): 145-149. ZHANG Xinjun, WANG Shilian, Li Qi, et al. Energy drift correction method for spectrum of CTBT aerosol sample[J]. Atomic Energy Science and Technology, 2018, 52(1): 145-149. [22] Leroux R R, Bezuidenhout J. An automated drift correction method for in situ NaI (Tl)-detectors used in extreme environments[J]. Applied Radiation and Isotopes, 2021: 110069. [23] 杨德祥, 罗耀耀, 葛良全, 等. 航空伽玛能谱数据的校正与重组[J]. 核电子学与探测技术, 2011, 31(6): 699-701+714. YANC Dexiang, LUO Yaoyao, GE Liangquan, et al.Calibration and data recombination for airborne gamma-ray spectrometry[J]. Nuclear Electronics & Detection Technology, 2011, 31(6): 699-701+714. [24] ZENG G, TAN C, GE L, et al. Frequency spectrum analysis for spectrum stabilization in airborne gamma-ray spectrometer[J]. Applied Radiation and Isotopes, 2014, 85: 70-76. |