[1] IAEA.Compendium of neutron spectra and detector responses for radiation protection purposes[R]. IAEA Technical Reports Series No. 403. Vienna,2001. [2] Lacoste V, Reginatto M, Asselineau B, et al. Bonner sphere neutron spectrometry at nuclear workplaces in the framework of the EVIDOS project[J]. Radiation Protection Dosimetry, 2006, 125(1-4): 304-308. [3] Luszik-Bhadra M, Bartlett D, Bolognese-Milsztajn T, et al. Characterisation of mixed neutron photon workplace fields at nuclear facilities by spectrometry (energy and direction) within the EVIDOS project[J]. Radiation Protection Dosimetry, 2007, 124(3): 219-229. [4] ISO. Reference neutron radiations—Part 1: Characteristics and methods of production:ISO 8529-1[S]. 2001. [5] ISO. Reference neutron radiations—Part 2: calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field:ISO 8529-2[S]. 2000. [6] ISO. Reference neutron radiations—Part 3: Calibration of area and personal dosimeters and determination of their response as a function of neutron energy and angle of incidence:ISO 8529-3[S]. 1998. [7] Vanhavere F, Bartlett D, Bolognese-Milsztajn T, et al. Evaluation of individual monitoring in mixed neutron/photon fields: mid-term results from the EVIDOS project[J]. Radiation Protection Dosimetry, 2006, 120(1-4): 263-267. [8] Luszik-Bhadra M, Bolognese-Milsztajn T, Boschung M, et al. Summary of personal neutron dosemeter results obtained within the EVIDOS project[J]. Radiation Protection Dosimetry, 2006, 125(1-4): 293-299. [9] Schuhmacher H, Bartlett D, Bolognese-Milsztajn T, et al. Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part II: conclusions and recommendations[J]. Radiation Protection Dosimetry, 2006, 125(1-4): 281-284. [10] d′Errico F, Bartlett D, Bolognese-Milsztajn T, et al. Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part I: scope and methods of the project[J]. Radiation Protection Dosimetry, 2006, 125(1-4): 275-280. [11] McDonald J C, Alberts W G, Bartlett D T, et al. Current status of an ISO working document on reference radiations: Characteristics and methods of production of simulated practical neutron fields[J]. Radiation Protection Dosimetry, 1997, 70(1-4): 323-325. [12] ISO. Reference radiation fields-simulated workplace neutron fields—Part 1: Characteristics and methods of production:ISO 12789-1[S]. 2008. [13] ISO. Reference radiation fields-simulated workplace neutron fields—Part 2: Calibration fundamentals related to the basic quantities:ISO 12789-2[S]. 2008. [14] Chartier J L, Posny F, Buxerolle M. Experimental assembly for the simulation of realistic neutron spectra[J]. Radiation Protection Dosimetry, 1992, 44(1-4): 125-130. [15] Gressier V, Lacoste V, Lebreton L, et al. Characterisation of the IRSN CANEL/T400 facility producing realistic neutron fields for calibration and test purposes[J]. Radiation Protection Dosimetry, 2004, 110(1-4): 523-527. [16] Lacoste V, Gressier V. Monte Carlo simulation of the IRSN CANEL/T400 realistic mixed neutron-photon radiation field[J]. Radiation Protection Dosimetry, 2004, 110(1-4): 123-127. [17] 刘毅娜, 王志强, 李春娟, 等. 模拟计算压水堆工作场所模拟中子参考辐射场[J]. 辐射防护, 2013, 33(3): 164-168. [18] 刘毅娜, 王志强, 李春娟, 等. 压水堆工作场所模拟中子参考辐射场的建立[J]. 原子能科学技术, 2020, 54(12): 2476-2480. [19] Mozhayev A V, Piper R K, Rathbone B A, et al. Investigation of workplace-like calibration fields via a deuterium-tritium (D-T) neutron generator[J]. Health Physics, 2017, 112(4): 364-375. [20] Mozhayev A V, Piper R K, Rathbone B A, et al. Moderator design studies for a new neutron reference source based on the D-T fusion reaction[J]. Radiation Physics and Chemistry, 2016, 123: 87-96. [21] 姚泽恩, 岳伟明, 罗鹏, 等. 厚靶T(d,n)~4He反应加速器中子源的中子产额、能谱和角分布[J]. 原子能科学技术, 2008(05): 400-403. [22] Ganesan S. IAEA Nuclear data Services[M]. 1995. [23] 羊奕伟,严小松,刘荣,等. 贫铀球壳中D-T中子诱发的铀反应率的测量与分析[J]. 物理学报,2013,62(02):186-192. |