[1] 翟笃林, 张学民, 熊攀, 等. Prophet 时序预测模型在电离层 TEC 异常探测中的应用[J]. 地震, 2019, 39(2): 46-62. [2] Li J, Izakian H, Pedrycz W, et al. Clustering-based anomaly detection in multivariate time series data[J]. Applied Soft Computing, 2021, 100: 106919. [3] Park S, Lee K H, Ko B, et al. Unsupervised anomaly detection with generative adversarial networks in mammography[R]. [2022-10-14].https://doi.org/10.21203/rs.3.rs-1533364/v1. [4] 王鑫, 吴际, 刘超, 等. 基于 LSTM 循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784. [5] 孔钦, 叶长青, 孙赟. 大数据下数据预处理方法研究[J]. 计算机技术与发展, 2018, 28(5): 1-4. [6] Agarwal V. Research on data preprocessing and categorization technique for smartphone review analysis[J]. International Journal of Computer Applications, 2015, 131(4): 30-36. [7] 崔少华, 方振国, 王江涛, 等. 基于小波变换的地震数据去噪的研究[J]. 曲阜师范大学学报: 自然科学版, 2018, 44(3): 54-58. [8] Mallat S. A wavelet tour of signal processing[M]. Elsevier, 1999. [9] Liu Z, Sullivan C J. Prediction of weather induced background radiation fluctuation with recurrent neural networks[J]. Radiation Physics and Chemistry, 2019, 155: 275-280. [10] Singh A. Anomaly detection for temporal data using long short-term memory (LSTM)[D].Eindhoven University of Technology, 2017. [11] Christopher Olah. Understanding LSTM Networks [EB/OL]. (2015-08-27)[2021-12-30]. http://colah.github.io/posts/2015-08-Understanding-LSTMs/. [12] John D. Hedengren. LSTM Networks [EB/OL]. (2020-01-17)[2021-12-30]. https://apmonitor.com/pds/index.php/Main/LongShortTermMemory. |