RADIATION PROTECTION ›› 2022, Vol. 42 ›› Issue (3): 184-192.
Previous Articles Next Articles
CHEN Faguo1,2, LIN Haipeng1, WANG Yong1, DANG Xuhong1, LIANG Runcheng1,2, REN Yue1
Received:
2021-07-08
Published:
2022-07-01
CLC Number:
CHEN Faguo, LIN Haipeng, WANG Yong, DANG Xuhong, LIANG Runcheng, REN Yue. Development of single-cell single-particle microbeam and applications in radiobology[J].RADIATION PROTECTION, 2022, 42(3): 184-192.
[1] 杜广华. 离子微束技术及其多学科应用[J]. 原子核物理评论, 2012, 29(4): 371-376. DU Guanghua. Techniques and multi-disciplinary applications of ion microbeam[J]. Nuclear Physics Review, 2012, 29(4): 371-376. [2] 郭娜,杜广华,刘文静,等. 微束技术在放射生物学中的应用[J]. 原子核物理评论, 2016, 33(4): 471-478. GUO Na, DU Guanghua, LIU Wenjing, et al. Microbeam application in radiation biology[J]. Nuclear Physics Review, 2016, 33(4): 471-478. [3] Prise K M, Schettino G. Microbeams in radiation biology: review and critical comparison[J]. Radiation Protection Dosimetry, 2010, 143(2-4): 335-339. [4] Barberet P, Seznec H. Advances in microbeam technologies and applications to radiation biology[J]. Radiation Protection Dosimetry, 2015, 166(1-4): 182-187. [5] Ghita M, Fernandez-Palomo C, Hisanori F, et al. Microbeam evolution: from single cell irradiation to pre-clinical studies[J]. Radiation Biology, 2018, 94(8):708-718. [6] Zirkle R E, Bloom W. Irradiation of parts of individual cells[J]. Science, 1953, 117(3045): 487-492. [7] Dymnikov A D, Fishkova T Y, Yavor S Y. Spherical aberration of compound quadrupole lenses and systems[J]. Nuclear Instruments and Methods, 1965, 37: 268-275. [8] Cookson J A, Pilling F D. Proton microbeam analysis in air[J]. Physics in Medicine & Biology, 1976, 21(6): 965-969. [9] Hable V, Greubel C, Bergmaier A, et al. The live cell irradiation and observation setup at SNAKE[J]. Nuclear Instruments and Methods in Physics Research B, 2009, 267(12-13): 2090-2097. [10] Siebenwirth C, Greubel C, Drexler S E, et al. Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE[J]. Nuclear Instruments and Methods in Physics Research B, 2015, 348: 137-142. [11] Folkard M, Vojnovic B, Prise K M, et al. The application of charged-particle microbeams in radiobiology[J]. Nuclear Instruments and Methods in Physics Research B, 2002, 188(1-4): 49-54. [12] Greif K, Brede H J, Frankenberg D, et al. The PTB single ion microbeam for irradiation of living cells[J]. Nuclear Instruments and Methods in Physics Research B, 2004, 217(3): 505-512. [13] 李嘉庆,王旭飞,张杰雄,等. 复旦大学单粒子微束研制进展[J]. 原子能科学技术, 2013, 47(10): 1917-1920. LI Jiaqing, WANG Xufei, ZHANG Jiexiong, et al. Development of single-ion microbeam at Fudan University[J]. Atomic Energy Science and Technology, 2013, 47(10): 1917-1920. [14] Qureshi S, Wu Jiacheng, Kan J A. Automated alignment and focusing system for nuclear microprobes[J]. Nuclear Instruments and Methods in Physics Research B, 2019, 456: 80-85. [15] Marino S A. 50 years of the radiological research accelerator facility (RARAF)[J]. Radiation Research, 2017, 187(4): 413-423. [16] Konishi T, Oikawa M, Suya N, et al. SPICE-NIRS microbeam: a focused vertical system for proton irradiation of a single cell for radiobiological research[J]. Radiation Research, 2013, 54(4): 736-747. [17] Nagasawa H, Little J B. Induction of sister chromatid exchanges by extremely low doses of alpha-particles[J]. Cancer Research, 1992, 52: 6394-6396. [18] Sorieul S, Alfaurt P, Daudin L, et al. Aifira: An ion beam facility for multidisciplinary research[J]. Nuclear Instruments and Methods in Physics Research B, 2014, 332: 68-73. [19] 宋明涛,盛丽娜,王志光,等. 中能重离子微束装置的研制[J]. Chinese Physics C, 2008, 32(S1): 259-261. SONG Mingtao, SHENG Lina, WANG Zhiguang, et al. Development of an intermediate energy heavy-ion micro-beam irradiation system[J]. Chinese Physics C, 2008, 32(SI): 259-261. [20] Merchant M J, Jeynes J C G, Grime G W, et al. A focused scanning vertical beam for charged particle irradiation of living cells with single counted particles[J]. Radiation Research, 2012, 178(3): 182-190. [21] Voss K O, Fournier C, Taucher-Scholz G. Heavy ion microprobes: a unique tool for bystander research and other radiobiological applications[J]. New Journal of Physics, 2008, 10(7): 1-18. [22] Kamiya T, Takano K, Satoh T, et al. Microbeam complex at TIARA: Technologies to meet a wide range of applications[J]. Nuclear Instruments and Methods in Physics Research B, 2011, 269(20): 2184-2188. [23] Nakamura M, Imai Ki, Hirose M, et al. Heavy-ion microbeam system for cell irradiation at Kyoto University[J]. Nuclear Instruments and Methods in Physics Research B, 2011, 269(24): 3153-3157. [24] Bourret S, Vianna F, Deves G, et al. Fluorescence time-lapse imaging of single cells targeted with a focused scanning charged-particle microbeam[J]. Nuclear Instruments and Methods in Physics Research B, 2014, 325: 27-34. [25] Funayama T. Heavy-Ion microbeams for biological science: development of system and utilization for biological experiments in QST-Takasaki[J]. quantum beam science, 2019, 3(2): 1-13. [26] Garty G, Gard M, Jones B K, et al. Design of a novel flow-and-shoot microbeam[J]. Radiation Protection Dosimetry, 2011, 143(2-4): 344-348. [27] Ohsawa D, Furusawa Y, Kobayashi A, et al. Analysis of SPICE microbeam size using fluorescent nuclear track detector (FNTD)[J]. Nuclear Instruments and Methods in Physics Research B, 2019, 453: 9-14. [28] Miller R C, Randers-Pehrson G, Geard C R, et al. The oncogenic transforming potential of the passage of single alpha particles through mammalian cell nuclei[J]. Applied Biological Sciences, 1999, 96(1): 19-22. [29] Averbeck D, Salomaa S, Bouffler S, et al. Progress in low dose risk research: novel effects and new concepts in low dose radiobiology[J]. Mutation Research, 2018, 776: 46-69. [30] WU Jinhua, HEI T K. Focus small to find big-the microbeam story[J]. International Journal of Radiation Biology, 2018, 94(8):782-788. [31] Greubel C, Ilicic K, Rosch T, et al. Low LET proton microbeam to understand high-LET RBE by shaping spatial dose distribution[J]. Nuclear Instruments and Methods in Physics Research B, 2017, 404: 155-161. [32] Muggiolu G, Pomorski M, Claverie G, et al. Single α-particle irradiation permits real-time visualization of RNF8 accumulation at DNA damaged sites[J]. Scientific Reports, 2017, 7: 1-9. [33] Friedland W, Kundrat P, Schmitt E, et al. Modelling studies on dicentrics induction after sub-micrometer focused ion beam grid irradiation[J]. Radiation Protection Dosimetry, 2019, 183(1-2): 40-44. [34] Prise K M, Belyakov O V, Folkard M, et al. Studies of bystander effects in human fibroblasts using a charged particle microbeam[J]. International Journal of Radiation Biology, 1998, 74(6):793-798. [35] Prise K M, Schettino G, Vojnovic B, et al. Microbeam studies of the bystander response[J]. Journal of Radiation Research, 2009, 50(SA):A1-A6. [36] Zhou Hongning, Randers-Pehrson G, Waldren C A, et al. Induction of a bystander mutagenic effect of alpha particles in mammalian cells[J]. PNAS, 2000, 97(5):2099-2104. [37] SHAO Chunlin, Folkard M, Michael B D, et al. Targeted cytoplasmic irradiation induces bystander responses[J]. PNAS, 2004, 101(37):13495-13500. [38] DONG Chen, TU Wenzhi, HE Mingyuan, et al. Role of endoplasmic reticulum and mitochondrion in proton microbeam radiation-induced bystander effect[J]. Radiation Research, 2020, 193(1): 63-72. [39] HU Songling, SHAO Chunlin. Research progress of radiation induced bystander and abscopal effects in normal tissue[J]. Radiation Medicine and Protection, 2020, 1(2):69-74. [40] 史月滨,张勇,王丽. 外泌体在辐射诱导旁效应中作用的研究进展[J]. 中华放射医学与防护杂志, 2020, 40(6): 489-492. SHI Yuebin, ZHANG Yong, WANG Li. Research progress on the role of exosomes in radiation-induced bystander effect[J]. Chinese Journal of Radiological Medicine and Protection, 2020, 40(6): 489-492. [41] Kobayashi A, Autsavapromporn N, Ahmad T A F T, et al. Bystander WI-38 cells modulate DNA double-strand break repair in microbeam-targeted A549 cells through gap junction intercellular communication[J]. Radiation Protection Dosimetry, 2019, 183(1-2): 142-146. [42] Yahyapour R, Motevaseli E, Rezaeyan A, et al. Mechanisms of radiation bystander and non-targeted effects: implications to radiation carcinogenesis and radiotherapy[J]. Current Radiopharmaceuticals, 2018, 11(1):34-45. [43] Tartier L, Spenlehauer Newma H C, et al. Local DNA damage by proton microbeam irradiation induces poly(ADP-ribose) synthesis in mammalian cells[J]. Mutagenesis, 2003, 18(5):411-416. [44] Dollinger G, Habel V, Hauptner A, et al. Microirradiation of cells with energetic heavy ions[J]. Nuclear Instruments and Methods in Physics Research B, 2005, 231(1-4): 195-201. [45] Heib M, Fischer B E, Jakob B, et al. Targeted irradiation of mammalian cells using a heavy-ion microprobe[J]. Radiation Research, 2006, 165(2):231-239. [46] Bigelow A W, Geard C R, Randers-pehrson G, et al. Microbeam-integrated multiphoton imaging system[J]. Review of Scientific Intruments, 2008, 79(12): 123707. [47] Merk B, Voss K O, Muller I, et al. Photobleaching setup for the biological end-station of the darmstadt heavy-ion microprobe[J]. Nuclear Instruments and Methods in Physics Research B, 2013, 306:81-84. [48] Patrono C, Gil O M, Giesen U, et al. ‘Bioquart’ Project: design of a novel in situ protocol for the simultaneous visualisation of chromosomal aberrations and micronuclei after irradiation at microbeam facilities[J]. Radiation Protection Dosimetry, 2015, 166(1-4):197-199. [49] WU Lijun, Randers-pehrson G, XU An, et al. Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells[J]. PNAS, 1999, 96(9):4959-4964. [50] Konishi T, Kobayashi A, Ahmad T A F T, et al. Enhanced DNA double strand break repair triggered by microbeam irradiation induced cytoplasmic damage[J]. Journal of Radiation and Cancer Research, 2018, 9(4): 183-189. [51] 张宇睿,徐文清. 电离辐射对线粒体损伤的研究进展[J]. 国际放射医学核医学杂志, 2016, 40(2): 154-157. ZHANG Yurui, XU Wenqing. Damages of ionizing radiation on mitochondria[J]. International Journal of Radiation Medicine and Nuclear Medicine, 2016, 40(2): 154-157. [52] Walsh D W M, Siebenwirth C, Greubel C, et al. Live cell imaging of mitochondria following targeted irradiation in situ reveals rapid and highly localized loss of membrane potential[J]. Scientific Reports, 2017, 7(1): 46684. [53] CHEN Xue, YU Qi, WANG Xufei, et al. DNA damage response in prostate cancer cells by proton microbeam irradiation[J]. Translational Cancer Research, 2020, 9(8): 4811-4819. [54] WANG Jun, Konishi T. Nuclear factor (erythroid-derived 2)-like 2 antioxidative response mitigates cytoplasmic radiation-induced DNA double-strand breaks[J]. Cancer Science, 2019, 110(2): 686-696. [55] Siebenwirth C, Greubel C, Drexler G A, et al. Local inhibition of rRNA transcription without nucleolar segregation after targeted ion irradiation of the nucleolus[J]. Journal of Cell Science, 2019, 132(19): 232181. [56] Belyakov O V, Folkard M, Mothersill C, et al. Bystander-induced apoptosis and premature differentiation in primary urothelial explants after charged particle microbeam irradiation[J]. Radiation Protection Dosimetry, 2002, 99(1-4): 249-251. [57] Belyakov O V, Mitchell S A, Parikh, et al. Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away[J]. PNAS, 2005, 102(40):14203-14208. [58] Suzuki M, Soh Z, Yamashita H, et al. Targeted central nervous system irradiation of caenorhabditis elegans induces a limited effect on motility[J]. Biology, 2020, 9 (9): 289. [59] Yamasiki A, Suzuki M, Funayama T, et al. High-dose irradiation inhibits motility and induces autophagy in caenorhabditis elegans[J]. International Journal of Molecular Sciences, 2021, 22(18): 9810. [60] Yasuda T, Funayama T, Nagata K, et al. Collimated microbeam reveals that the proportion of non-damaged cells in irradiated blastoderm determines the success of development in Medaka (Oryzias latipes) Embryos[J]. Biology, 2020, 9 (12): 447. [61] Fukunaga H, Butterworth K T, Mcmahon S J, et al. A brief overview of the preclinical and clinical radiobiology of microbeam radiotherapy[J]. Clinical Oncology, 2021, 33 (11): 705-712. |
[1] | ZHENG Yudong, LIU Yuanduo, WANG Changzheng, HUANG Jiangrong, LIU Lian. Effect of ionizing radiation on spleen development of mice during weaning age [J]. RADIATION PROTECTION, 2021, 41(5): 467-472. |
[2] | TIAN Xuelei, LU Xue, CAI Tianjing, TIAN Mei, LIU Qingjie. Estimating partial exposure dose by chromosomal aberrations in human peripheral blood lymphocytes in vitro [J]. RADIATION PROTECTION, 2021, 41(4): 309-314. |
[3] | XU Zhao, CHEN Ni, WANG Zhigang, LI Taosheng. Dose effect of high-energy neutron radiation on Caenorhabditis elegans [J]. RADIATION PROTECTION, 2019, 39(2): 150-156. |
[4] | DANG Xuhong, ZUO Yahui, WANG Fang, ZHANG Jingyun, DONG Juancong, ZHANG Zhongxin, DUAN Zhikai. Detection and analysis of MXR7 gene expression in human liver cells induced by radiation and peripheral blood of radiation workers [J]. RADIATION PROTECTION, 2018, 38(6): 517-521. |
[5] | QIN Xiujun, SUN Ge, YUE Juan, HUANG Liqun, LI Weibin, YIN Jingjing, LI Jianguo. Protective effect of hydrogen rich water on acute hematological damage in Beagle dogs exposed to 60Co [J]. RADIATION PROTECTION, 2018, 38(5): 428-432. |
[6] | Hu Yameng, Long Ying, Chen Kelian, Liu Bengbo, He Shuya, Huang Bo. Mechanism of radioprotection effects of Astragaloside IV on the liver cell [J]. RADIATION PROTECTION, 2017, 37(4): 309-316. |
[7] | Li Chao, Li Zhongqiu, Li Xueping, Yang Yang, Zeng Yan, Pan Xiujie, Yang Zhihua, Zhu Maoxiang, Gu Yongqing. Effects of salt-inducible kinase 2 on autophagy and apoptosis induced by ionizing radiation [J]. RADIATION PROTECTION, 2017, 37(3): 214-222. |
[8] | Zhao Weichao, Hu Nan, Ding Dexin, Long Dingxin, He Shuya, Li Le, Hu Miao, Feng Yongfu. Study on toxicity of low dose γ radiation to Qinghai Vibrio Q67 [J]. RADIATION PROTECTION, 2017, 37(2): 138-144. |
[9] | Li Wenbo, Pang Hua, Zhou Jing, Wu Hong, Jiang Rong. Effects of lyceum barbarum polysaccharide (LBP) on peripheral blood and bone marrow mononuclear cells of X ray irradiated mice [J]. RADIATION PROTECTION, 2016, 36(4): 218-223. |
|