[1] Forslund D W, Kindel J M, Lee K, et al. Theory and simulation of resonant absorption in a hot plasma[J]. Physical Review A, 1975, 11(2):679-683. [2] Gibbon P, Bell A R. Collisionless absorption in sharp-edged plasmas[J]. Physical Review Letters, 1992, 68(10):1535-1538. [3] Henderson A, Liang E, Riley N, et al. Ultra-intense gamma-rays created using the texas petawatt laser[J]. High Energy Density Physics, 2014, 12(8):46-56. [4] Courtois C, Edwards R, Compant L, et al. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography[J]. Physics of Plasmas, 2013, 20(8):0831141-0831150. [5] Fontaine A, Courtois C, Gobet F, et al. Bremsstrahlung spectrum and photon dose from short-pulse high-intensity laser interaction on various metal targets[J]. Physics of Plasmas, 2019, 26(11):1131091-11310915. [6] 祁兰英,易荣清,李三伟,等.用于硬X光诊断的宽量程滤波谱仪[J].核电子学与探测技术,1998,18(1):42-45. [7] Turner R E, Estabrook K, Drake R P, et al. Observation of forward raman scattering in laser-produced plasmas[J]. Physical Review Letters, 1986, 57(14):1725-1728. [8] McDonald J W, Kauffman R L, Celeste J R, et al. Filter-fluorescer diagnostic system for the National Ignition Facility[J]. Review of Scientific Instruments, 2004, 75(10):3753-3755. [9] Hatchett S P, Brown C G, Cowan T E, et al. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets[J]. Physics of Plasmas, 2000, 7:2076-2082. [10] 苏兆锋, 邱爱慈, 来定国, 等. 脉冲X射线能谱测量技术发展综述[J]. 现代应用物理, 2018, 9(03):34-41. [11] Balovnev A V, Grygoryeva I G, Salakhutdinov G K. Measuring the spectral composition of X-ray pulses from a plasma using a compact spectrometer based on thermoluminescent detector arrays[J]. Instruments and Experimental Techniques, 2018, 61(1):91-93. [12] Balovnev A V, Grigoryeva I G, Salakhutdinov G K. Application of thermoluminescent detectors for diagnosing plasma objects[J]. Instruments and Experimental Techniques, 2015, 58(1):98-101. [13] Ludwik Silberstein. Determination of the spectral composition of X-ray radiation from filtration data[J]. Journal of the Optical Society of America, 1932, 22, 265-280. [14] 陈楠,荆晓兵,高峰,等. 用于高能X射线能谱测量的MLS法[J]. 强激光与粒子束,2012,24(4):785-788. [15] Ross P A. A new method of spectroscopy for faint X radiations[J]. Journal of the Optical Society of America, 1928, 16(6), 433-437. [16] 孙景文.罗斯平衡滤波片和光电差分探测器[J].核电子学与探测技术,1985,5(04):57-59. [17] Kirkpatrick P. On the theory and use of Ross filters[J]. Review of Scientific Instruments, 1939, 10(6):186-191. [18] 黄天暄,郑志坚,孙可煦,等.用于软X光能谱测量的Ross滤片对的设计[J].强激光与粒子束,2000,12(1):65-68. [19] YAO L, PU Y, ZHAN X, et al. X-ray fluorescence imaging of laser-driven hydrodynamic instability systems with a Ross Pair Imager[J]. High Energy Density Physics, 2020, 37:1008821-1008826. [20] 胡青元, 杨军, 甯家敏,等.罗斯滤片法测量激光打靶X射线辐射通量[J].强激光与粒子束,2014, 26(11):68-71. [21] Bachmann B, Chow R, Palmer N E, et al. Improved hard X-ray (50-80 keV) imaging of hohlraum implosion experiments at the National Ignition Facility[C]. SPIE Optical Engineering Applications. 2016:996601-996614. [22] Carlson G A, Lorence L J,et al. A differential absorption spectrometer for determining flash X-ray spectra from 10 to 2000 keV[J]. Nuclear Science, IEEE Transactions on Nuclear Science, 1988, 35(6) :1255-1259. [23] ZHU J, XIE X, SUN M, et al. Analysis and construction status of SG-II 5PW laser facility[J]. High Power Laser Science and Engineering, 2018:6(29), 1-13. [24] Doria D, Cernaianu M O, Ghenuche P, et al. Overview of ELI-NP status and laser commissioning experiments with 1 PW and 10 PW class-lasers[J]. Journal of Instrumentation, 2020, 15(9):C09053-C09053. [25] Nolte R, Behrens R, Schnürer M, et al. A TLD-based few-channel spectrometer for X-ray fields with high fluence rates[J]. Radiation Protection and Dosimetry, 1999, 84:367-370. [26] Behrens R, Ambrosi P. A TLD-based few-channel spectrometer for mixed photon, electron, and ion fields with high fluence rates[J]. Radiation Protection and Dosimetry, 2002,(1-4):73-76. [27] Behrens R, Schwoerer H, Dusterer S, et al. A thermoluminescence detector-based few-channel spectrometer for simultaneous detection of electrons and photons from relativistic laser-produced plasmas[J]. Review of Scientific Instruments, 2003, 74(2):961-968. [28] Behrens R. A spectrometer for pulsed and continuous photon radiation[J]. Journal of Instrumentation, 2009, 4(03):P03027-P03027. [29] 陈豪.飞秒激光与固体靶相互作用产生的硬X射线能谱测量研究[D].成都:四川大学, 2004. [30] 于明海,谭放,闫永宏,等.用于激光产生的高能X射线源能谱诊断的滤片堆栈谱仪的研制[J]. 原子能科学技术, 2017, 51(6):1090-1095. [31] Chen C D, King J A, Key M H, et al. A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters[J]. Review of Scientific Instruments, 2008, 79(10):10E305-10E305-3. [32] Scott R H H, Clark E J, Perez F, et al. Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors[J].Review of Scientific Instruments,2013, 84(8). DOI:10.1063/1.4816332. [33] 张思群,王昆仑,李晶,等.聚龙一号丝阵负载Z箍缩硬X射线能谱测量[J].强激光与粒子束,2018,256(10):96-99. [34] Maddox B R, Park H S,Remington B A, et al. High-energy X-ray backlighter spectrum measurements using calibrated image plates[J]. Review of Scientific Instruments, 2011, 82(2), 0231111-02311113. [35] 郭红霞,龚建成,何宝平,等.DPF脉冲X射线能谱测量[J].核技术,2000,23(1):22-26. [36] Khutoretsky I V. Design of an optimal Ross filter system for X-ray spectra measurements in the range of 8.98-88 keV[J]. Review of Scientific Instruments, 1995, 66(1):773-775. [37] Breckow, Joachim, Rosmej, et al. A TLD-based ten channel system for the spectrometry of bremsstrahlung generated by laser-matter interaction[J]. Nuclear Instruments and Methods in Physics Research, Section A. Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 782:69-76. [38] 阿蒂克斯,崔高显,雷家荣.放射物理和辐射剂量学导论[M].中国原子能出版,2013:199-217. [39] Zarick T A, Sheridan T J, Hartman E F, et al. Spectral unfolds of PITHON flash X-ray source[R]. Office of Scientific & Technical Information Technical Reports, 2007. [40] Salakhutdinov G, Grigoryeva I. Impulse X-ray spectrometer based on the thermoluminescent detectors[J]. Procedia Computer Science, 2018, 123:413-416. [41] Hohenberger M, Palmer N E, Lacaille G, et al. Measuring the hot-electron population using time-resolved hard X-ray detectors on the NIF[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2013, 8850(23):1-15. [42] Jones M C, Ampleford D J, Cuneo M E, et al. X-ray power and yield measurements at the refurbished Z machine[J]. Review of Scientific Instruments, 2014, 85(8):0835011-08350112. [43] 易义成,宋朝晖,管兴胤,等.溴化澜高剂量率线性响应范围的测定[J].强激光与粒子束,2016,28(9):0960021-0960025. [44] Rusby D R, Armstrong C D, Brenner C M, et al. Novel scintillator-based x-ray spectrometer for use on high repetition laser plasma interaction experiments[J]. Review of Scientific Instruments, 2018, 89(7):0735021-0735028. [45] Hasegawa S, Takashima R, Todoriki M, et al. Determination of the temperature of bremsstrahlung photon generated by ultraintense laser using various thickness attenuators[J]. Review of Scientific Instruments, 2011, 82(3):033301-033305. [46] Goldin F J, Mitchell S E. Collimated step-wedge spectrometer for flash X-ray radiography sources[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2004, 5198:126-133. [47] Stoeckl M, Solodov A A. Refining instrument response functions with 3-D Monte Carlo simulations of differential hard x-ray spectrometers[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 931:162-171. [48] 全林,郑伟博,屠荆,等.快脉冲硬X射线能谱测量实验研究[J].原子能科学技术,2009,43(7):658-662. [49] Halbleib J A, Kensek R P, Mehlhorn T A, et al.ITS Version 3.0:the integrated TIGER series of coupled electron/photon monte carlo transport codes[R]. Technical Report SAND91-1634, Sandia National Laboratories, 1992. [50] Beutler D E, Halbleib J A, Knott D P. Comparison of experimental pulse-height distributions in germanium detectors with Integrated-Tiger-Series-code predictions[J]. IEEE Transactions on Nuclear Science, 1989, 36(6):1912-1919. [51] Nelson W R, Hirayama H, Rogers D W O. The EGS4 code system[R]. Report SLAC-265, 1985. [52] Gallardo S, Rodenas J, Querol A, et al. Application of the MTSVD unfolding method for reconstruction of primary X-ray spectra using semiconductor detectors[J]. Progress in Nuclear Energy, 2011, 53(8):1136-1139. [53] Moralles M, Bonifacio D A B, Bottaro M, et al. Monte Carlo and least-squares methods applied in unfolding of X-ray spectra measured with cadmium telluride detectors[J]. Nuclear Inst & Methods in Physics Research A, 2007, 580(1):270-273. [54] Querol A, Gallardo S, J RÓdenas, et al. Application of the Tikhonov unfolding method for reconstruction of primary X-ray spectra from X-ray equipments[J]. Progress in Nuclear Science & Technology, 2011, 2(3):474-478. [55] Reginatto M. Overview of spectral unfolding techniques and uncertainty estimation[J]. Radiation Measurements, 2010, 45(10):1323-1329. [56] Reginatto M, Wiegel B,Zimbal A. The UMG-Code package, ver 3.3 (2004), available from the Nuclear Energy Agency (NEA) Data Bank[J]. www.nea.fr/abs/html/nea-1665.html. [57] Matzke M. Unfolding of pulse height spectra:the HEPRO program system[R]. PTB Report PTB-N-19, 1994. [58] Lunn D J, Thomas A, Best N,et al. WinBUGS - A Bayesian modelling framework:Concepts, structure, and extensibility[J]. Statistics and Computing, 2000, 10(4):325-337. [59] Matzke M. Unfolding of particle spectra[J]. Proceedings of Spie the International Society for Optical Engineering, 1997, 2867, 598-607. [60] Shore J E, Johnson R W. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross entropy[J]. IEEE Trans Info Theory IT-26, 1980, 26(1):26-37. [61] 江少恩,郑志坚,孙可煦.软X光能谱仪的一种新的解谱方法[J].计算物理,2001,18(3):276-280. [62] XIA Nan, HUANG Yunbao, LI Haiyan, et al.A novel recovery method of soft X-ray spectrum unfolding based on compressive sensing[J]. Sensors, 2018, 18:37251-372515. [63] Reginatto M,Goldhagen P. MAXED, A computer code for maximum entropy deconvolution of multisphere neutron spectrometer data[J]. Health Physics, 1999, 77 (5) :579-587. [64] Fernández J E, Scot V, Giulio E D, et al. Improvement of the detector resolution in X-ray spectrometry by using the maximum entropy method[J]. Radiation Physics and Chemistry, 2015, 116:194-198. [65] Sarkar P K, Vitisha, et al. Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation[J]. Nuclear Instruments and Methods in Physics Research, Section A. Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 737:76-86. [66] Hosseini S A. Neutron spectrum unfolding using artificial neural network and modified least square method[J]. Radiation Physics and Chemistry, 2016, 126:75-84. [67] Gorbics S G, Pereira N R. Differential absorption spectrometer for pulsed bremsstrahlung[J]. Review of Scientific Instruments, 1993, 64(7):1835-1840. [68] YANG B, QIU R, LI J L, et al. Photon dose estimation from ultraintense laser-solid interactions and shielding calculation with Monte Carlo simulation[J]. Radiation Physics and Chemistry, 2017, 131:13-21. [69] YANG B, QIU R, YU M, et al. Measurements of X-ray doses and spectra produced by picosecond laser-irradiated solid targets[J]. Applied Radiation and Isotopes, 2017, 123:41-48. |